scholarly journals Correction: IL-26 Is Overexpressed in Rheumatoid Arthritis and Induces Proinflammatory Cytokine Production and Th17 Cell Generation

Author(s):  
Murielle Corvaisier ◽  
Yves Delneste ◽  
Henry Jeanvoine ◽  
Laurence Preisser ◽  
Simon Blanchard ◽  
...  
PLoS Biology ◽  
2012 ◽  
Vol 10 (9) ◽  
pp. e1001395 ◽  
Author(s):  
Murielle Corvaisier ◽  
Yves Delneste ◽  
Henry Jeanvoine ◽  
Laurence Preisser ◽  
Simon Blanchard ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1353.2-1353
Author(s):  
A. Yadon ◽  
D. Ruelas ◽  
G. Min-Oo ◽  
J. Taylor ◽  
M. R. Warr

Background:Rheumatoid arthritis (RA) is characterized by chronic, uncontrolled joint inflammation and tissue destruction. Macrophages are thought to be key mediators in both the initiation and perpetuation of this pathology.1,2The RA synovium contains a complex inflammatory milieu that can stimulate macrophage-dependent production of proinflammatory cytokines through multiple signaling pathways.1,2Existing evidence indicates that toll-like receptors (TLRs) and interleukin-1 receptors (IL-1R) along with their agonists, damage-associated molecular patterns (DAMPs) and IL-1β, are highly expressed in RA joints and are important mediators of synovial macrophage activation and proinflammatory cytokine production.1-9IRAK4 (interleukin-1 receptor-associated kinase 4) is a serine/threonine kinase that facilitates TLR and IL-1R signaling in many cell types, including macrophages.10IRAK4 inhibition represents an opportunity to reduce proinflammatory cytokine production in the joints of patients with RA.Objectives:To investigate the effect of a highly selective IRAK4 inhibitor on proinflammatory cytokine production from human macrophages stimulated with synovial fluid from patients with RA.Methods:Primary human monocytes from 2 independent donors were differentiated for 6 days with granulocyte-macrophage colony-stimulating factor (GM-CSF) to generate human monocyte-derived macrophages (hMDMs). hMDMs were then pretreated with an IRAK4 inhibitor for 1 hour and subsequently stimulated for 24 hours with RA synovial fluid from 5 patients. Culture supernatants were then assessed for secretion of proinflammatory cytokines by MesoScale Discovery.Results:RA synovial fluid stimulation of hMDMs resulted in the production of several proinflammatory cytokines, including IL-6, IL-8, and TNFα. Pretreatment of hMDMs with an IRAK4 inhibitor resulted in the dose-dependent inhibition of IL-6, IL-8, and TNFα production, with an average EC50± SD of 27 ± 31, 26 ± 41, and 28 ± 22 nM, respectively. Maximal percent suppression ± SD of IL-6, IL-8, and TNFα were 76 ± 8.8, 73 ± 15, and 77 ± 13, respectively. To evaluate the specific IRAK4-dependent signaling pathways mediating this response, hMDMs were pretreated with inhibitors of TLR4 (TAK242) and IL-1R (IL-1RA) prior to stimulation with RA synovial fluid. Both TAK242 and IL-1RA inhibited proinflammatory cytokine production. For TAK242, maximal percent suppression ± SD of IL-6, IL-8, and TNFα were 39 ± 25, 48 ± 24, and 50 ± 21, respectively. For IL-1RA maximal percent suppression ± SD of IL-6, IL-8, and TNFα were 18 ± 18, 20 ± 23, and 16 ± 18, respectively. The broad range of inhibition across each stimulation highlights the complexity and variability in the signaling pathways mediating proinflammatory cytokine production from hMDMs stimulated with RA synovial fluid, but demonstrates that RA synovial fluid can stimulate proinflammatory cytokine production in hMDMs, at least partly, through IRAK4-dependent pathways.Conclusion:This work demonstrates that IRAK4 inhibition can suppress proinflammatory cytokine production from macrophages stimulated with synovial fluid from patients with RA and supports a potential pathophysiological role for IRAK4 in perpetuating chronic inflammation in RA.References:[1]Smolen JS, et al.Nat Rev Dis Primers.2018;4:18001.[2]Udalova IA, et al.Nat Rev Rheumatol.2016;12(8):472-485.[3]Joosten LAB, et al.Nat Rev Rheumatol.2016;12(6):344-357.[4]Huang QQ, Pope RM.Curr Rheumatol Rep.2009;11(5):357-364.[5]Roh JS, Sohn DH.Immune Netw.2018;18(4):e27.[6]Sacre SM, et al.Am J Pathol.2007;170(2):518-525.[7]Ultaigh SNA, et al.Arthritis Res Ther.2011;13(1):R33.[8]Bottini N, Firestein GS.Nat Rev Rheumatol.2013;9(1):24-33.[9]Firestein GS, McInnes IB.Immunity.2017;46(2):183-196.[10]Janssens S, Beyaert R.Mol Cell.2003;11(2):293-302.Disclosure of Interests:Adam Yadon Employee of: Gilead, Debbie Ruelas Employee of: Gilead, Gundula Min-Oo Employee of: Gilead, James Taylor Employee of: Gilead, Matthew R. Warr Employee of: Gilead


2011 ◽  
Vol 70 (10) ◽  
pp. 1866-1873 ◽  
Author(s):  
Fabienne Niederer ◽  
Caroline Ospelt ◽  
Fabia Brentano ◽  
Michael O Hottiger ◽  
Renate E Gay ◽  
...  

ObjectiveTo analyse the expression of SIRT1 in synovial tissues and cells of patients with rheumatoid arthritis (RA) and to study the function of SIRT1 in inflammation and apoptosis in RA.MethodsLevels of SIRT1 expression were analysed in synovial tissues and cells from patients with RA by real-time PCR and western blotting before and after stimulation with toll-like receptor ligands, tumour necrosis factor α (TNFα) and interleukin 1β (IL-1β). Immunohistochemistry was used to study the localisation of SIRT1. Fluorescence activated cell sorting analysis was performed to investigate the effect of SIRT1 on apoptosis. Peripheral blood monocytes and rheumatoid arthritis synovial fibroblasts (RASFs) were transfected with wild-type or enzymatically inactive SIRT1 expression vectors or with siRNA targeting SIRT1. Cytokine analysis of IL-6, IL-8 and TNFα were performed by ELISA to study the role of SIRT1 on proinflammatory mediators of RA.ResultsSIRT1 was found to be constitutively upregulated in synovial tissues and cells from patients with RA compared to osteoarthritis. TNFα stimulation of RASFs and monocytes resulted in further induced expression levels of SIRT1. Silencing of SIRT1 promoted apoptosis in RASFs, whereas SIRT1 overexpression protected cells from apoptosis. Inhibition of SIRT1 enzymatic activity by inhibitors, siRNA and overexpression of an enzymatically inactive form of SIRT1 reduced lipopolysaccharide-induced levels of TNFα in monocytes. Similarly, knockdown of SIRT1 resulted in a reduction of proinflammatory IL-6 and IL-8 in RASFs.ConclusionThe TNFα-induced overexpression of SIRT1 in RA synovial cells contributes to chronic inflammation by promoting proinflammatory cytokine production and inhibiting apoptosis.


2012 ◽  
Vol 14 (5) ◽  
pp. R228 ◽  
Author(s):  
Fang Wang ◽  
Lingxiao Xu ◽  
Xiaoke Feng ◽  
Dunming Guo ◽  
Wenfeng Tan ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Awo Akosua Kesewa Layman ◽  
Stephanie L. Sprout ◽  
Dylan Phillips ◽  
Paula M. Oliver

Sign in / Sign up

Export Citation Format

Share Document