scholarly journals Sleep drive reconfigures wake-promoting clock circuitry to regulate adaptive behavior

PLoS Biology ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. e3001324
Author(s):  
Markus K. Klose ◽  
Paul J. Shaw

Circadian rhythms help animals synchronize motivated behaviors to match environmental demands. Recent evidence indicates that clock neurons influence the timing of behavior by differentially altering the activity of a distributed network of downstream neurons. Downstream circuits can be remodeled by Hebbian plasticity, synaptic scaling, and, under some circumstances, activity-dependent addition of cell surface receptors; the role of this receptor respecification phenomena is not well studied. We demonstrate that high sleep pressure quickly reprograms the wake-promoting large ventrolateral clock neurons to express the pigment dispersing factor receptor (PDFR). The addition of this signaling input into the circuit is associated with increased waking and early mating success. The respecification of PDFR in both young and adult large ventrolateral neurons requires 2 dopamine (DA) receptors and activation of the transcriptional regulator nejire (cAMP response element-binding protein [CREB]). These data identify receptor respecification as an important mechanism to sculpt circuit function to match sleep levels with demand.

2019 ◽  
Author(s):  
MK Klose ◽  
PJ Shaw

AbstractNeuronal circuits can be re-modeled by Hebbian plasticity, synaptic scaling and, under some circumstances, activity-dependent respecification of cell-surface receptors. Although the impact of sleep on Hebbian plasticity and synaptic scaling are well studied, sleep’s role in receptor respecification remains unclear. We demonstrate that high sleep-pressure quickly reprograms the Drosophila wake-promoting large-ventrolateral clock-neurons to express the Pigment Dispersing Factor receptor. The addition of this signaling input into the circuit is associated with increased waking and early mating success. The respecification of Pigment Dispersing Factor receptor in both young and adult large ventrolateral neurons requires two dopamine receptors and activation of the transcriptional regulator nejire (CREB-binding protein). These data identify receptor-respecification as an important mechanism to sculpt circuit function to match sleep levels with demand.


2019 ◽  
Vol 17 (3) ◽  
pp. 249-253
Author(s):  
Liu Chenglong ◽  
Liu Haihua ◽  
Zhang Fei ◽  
Zheng Jie ◽  
Wei Fang

Cancer-induced bone pain is a severe and complex pain caused by metastases to bone in cancer patients. The aim of this study was to investigate the analgesic effect of scutellarin on cancer-induced bone pain in rat models by intrathecal injection of Walker 256 carcinoma cells. Mechanical allodynia was determined by paw withdrawal threshold in response to mechanical stimulus, and thermal hyperalgesia was indicated by paw withdrawal latency in response to noxious thermal stimulus. The paw withdrawal threshold and paw withdrawal latencies were significantly decreased after inoculation of tumor cells, whereas administration of scutellarin significantly attenuated tumor cell inoculation-induced mechanical and heat hyperalgesia. Tumor cell inoculation-induced tumor growth was also significantly abrogated by scutellarin. Ca2+/calmodulin-dependent protein kinase II is a multifunctional kinase with up-regulated activity in bone pain models. The activation of Ca2+/calmodulin-dependent protein kinase II triggers phosphorylation of cAMP-response element binding protein. Scutellarin significantly reduced the expression of phosphorylated-Ca2+/calmodulin-dependent protein kinase II and phosphorylated-cAMP-response element binding protein in cancer-induced bone pain rats. Collectively, our study demonstrated that scutellarin attenuated tumor cell inoculation-induced bone pain by down-regulating the expression of phosphorylated-Ca2+/calmodulin-dependent protein kinase II and phosphorylated-cAMP-response element binding protein. The suppressive effect of scutellarin on phosphorylated-Ca2+/calmodulin-dependent protein kinase II/phosphorylated-cAMP-response element binding protein activation may serve as a novel therapeutic strategy for CIBP management.


Sign in / Sign up

Export Citation Format

Share Document