scholarly journals Precise Regulation of Gene Expression Dynamics Favors Complex Promoter Architectures

2009 ◽  
Vol 5 (1) ◽  
pp. e1000279 ◽  
Author(s):  
Dirk Müller ◽  
Jörg Stelling
2020 ◽  
Vol 21 (21) ◽  
pp. 8278
Author(s):  
Amparo Pascual-Ahuir ◽  
Josep Fita-Torró ◽  
Markus Proft

The regulation of gene expression is a fundamental process enabling cells to respond to internal and external stimuli or to execute developmental programs. Changes in gene expression are highly dynamic and depend on many intrinsic and extrinsic factors. In this review, we highlight the dynamic nature of transient gene expression changes to better understand cell physiology and development in general. We will start by comparing recent in vivo procedures to capture gene expression in real time. Intrinsic factors modulating gene expression dynamics will then be discussed, focusing on chromatin modifications. Furthermore, we will dissect how cell physiology or age impacts on dynamic gene regulation and especially discuss molecular insights into acquired transcriptional memory. Finally, this review will give an update on the mechanisms of heterogeneous gene expression among genetically identical individual cells. We will mainly focus on state-of-the-art developments in the yeast model but also cover higher eukaryotic systems.


Author(s):  
Guilherme Giovanini ◽  
Luciana Rodrigues Carvalho Barros ◽  
Leonardo dos Reis Gama ◽  
Tharcisio Citrangulo Tortelli Junior ◽  
Alexandre Ferreira Ramos

In this manuscript we use an exactly solvable stochastic binary model for regulation of gene expression to analyse the dynamics of response to a treatment aiming to modulate the number of transcripts of RKIP gene. We demonstrate the usefulness of our method simulating three treatment scenarios aiming to reestablish RKIP gene expression dynamics towards pre-cancerous state: i. to increase the promoter’s ON state duration; ii. to increase the mRNAs’ synthesis rate; iii. to increase both rates. We show that the pre-treatment kinetic rates of ON and OFF promoter switching speeds and mRNA synthesis and degradation will affect the heterogeneity and time for treatment response. Hence, we present a strategy for reducing drug dosage by simultaneously targeting multiple kinetic rates. That enables a reduction of treatment response time and heterogeneity which in principle diminishes the chances of emergence of resistance to treatment. This approach may be useful for inferring kinetic constants related to expression of antimetastatic genes or oncogenes and on the design of multi-drug therapeutic strategies targeting master regulatory genes.


2020 ◽  
Vol 477 (16) ◽  
pp. 3091-3104 ◽  
Author(s):  
Luciana E. Giono ◽  
Alberto R. Kornblihtt

Gene expression is an intricately regulated process that is at the basis of cell differentiation, the maintenance of cell identity and the cellular responses to environmental changes. Alternative splicing, the process by which multiple functionally distinct transcripts are generated from a single gene, is one of the main mechanisms that contribute to expand the coding capacity of genomes and help explain the level of complexity achieved by higher organisms. Eukaryotic transcription is subject to multiple layers of regulation both intrinsic — such as promoter structure — and dynamic, allowing the cell to respond to internal and external signals. Similarly, alternative splicing choices are affected by all of these aspects, mainly through the regulation of transcription elongation, making it a regulatory knob on a par with the regulation of gene expression levels. This review aims to recapitulate some of the history and stepping-stones that led to the paradigms held today about transcription and splicing regulation, with major focus on transcription elongation and its effect on alternative splicing.


Sign in / Sign up

Export Citation Format

Share Document