scholarly journals A Stochastic Binary Model for Regulation of Gene Expression to Investigate Treatment Effects Targeting RKIP

Author(s):  
Guilherme Giovanini ◽  
Luciana Rodrigues Carvalho Barros ◽  
Leonardo dos Reis Gama ◽  
Tharcisio Citrangulo Tortelli Junior ◽  
Alexandre Ferreira Ramos

In this manuscript we use an exactly solvable stochastic binary model for regulation of gene expression to analyse the dynamics of response to a treatment aiming to modulate the number of transcripts of RKIP gene. We demonstrate the usefulness of our method simulating three treatment scenarios aiming to reestablish RKIP gene expression dynamics towards pre-cancerous state: i. to increase the promoter’s ON state duration; ii. to increase the mRNAs’ synthesis rate; iii. to increase both rates. We show that the pre-treatment kinetic rates of ON and OFF promoter switching speeds and mRNA synthesis and degradation will affect the heterogeneity and time for treatment response. Hence, we present a strategy for reducing drug dosage by simultaneously targeting multiple kinetic rates. That enables a reduction of treatment response time and heterogeneity which in principle diminishes the chances of emergence of resistance to treatment. This approach may be useful for inferring kinetic constants related to expression of antimetastatic genes or oncogenes and on the design of multi-drug therapeutic strategies targeting master regulatory genes.

2020 ◽  
Vol 21 (21) ◽  
pp. 8278
Author(s):  
Amparo Pascual-Ahuir ◽  
Josep Fita-Torró ◽  
Markus Proft

The regulation of gene expression is a fundamental process enabling cells to respond to internal and external stimuli or to execute developmental programs. Changes in gene expression are highly dynamic and depend on many intrinsic and extrinsic factors. In this review, we highlight the dynamic nature of transient gene expression changes to better understand cell physiology and development in general. We will start by comparing recent in vivo procedures to capture gene expression in real time. Intrinsic factors modulating gene expression dynamics will then be discussed, focusing on chromatin modifications. Furthermore, we will dissect how cell physiology or age impacts on dynamic gene regulation and especially discuss molecular insights into acquired transcriptional memory. Finally, this review will give an update on the mechanisms of heterogeneous gene expression among genetically identical individual cells. We will mainly focus on state-of-the-art developments in the yeast model but also cover higher eukaryotic systems.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1305-1305
Author(s):  
Kirk Cahill ◽  
Linchen Wang ◽  
Guanghao Liang ◽  
Qiancheng You ◽  
Chuanyuan Chen ◽  
...  

Abstract Introduction Acute myeloid leukemia (AML) is an aggressive disease with genetic and phenotypic heterogeneity that results in a highly variable response to standard chemotherapy. Azacitidine (AZA) is a hypomethylating agent (HMA) and has been investigated in combination with intensive chemotherapy as an epigenetic primer to sensitize leukemic cells to treatment. In a phase 1 trial, this regimen was safe and well-tolerated with overall response rate (CR+CRi) of 61% and complete remission rate of 41% (Cahill et al, Blood Adv 2020). Predictive biomarkers for response to this treatment strategy have not yet been identified. Since 5-hydroxymethylcytosine (5hmC) is an epigenetic biomarker in cancer, we hypothesized that Nano-5hmC-Seal sequencing technology may serve as a novel approach to identifying 5hmC profiles predictive of treatment response to epigenetic priming. Methods We performed RNA-seq gene expression and Nano-5hmC-Seal DNA profiling from peripheral blood/bone marrow samples of patients with high-risk AML to identify potential 5hmC profile biomarkers and gene expression changes (Figure 1A). Patients (n=46) were treated in a 3+3 dose-escalation scheme of AZA (37.5 mg/m 2, 50 mg/m 2, or 75 mg/m 2) on days 1-5 followed by high-dose cytarabine (3000 mg/m 2) and mitoxantrone (30 mg/m 2) (AZA-HiDAC-Mito) on day 6 and day 10 in a phase 1 trial previously reported (Cahill et al, Blood Adv 2020). We compared pre-treatment RNA-seq gene expression and 5hmC DNA profiles between responders (CR+CRi) and non-responders, as well as between pre-treatment and after 5 days of AZA for individual patients. We used an XGBoost machine learning model in Python based on a training set of patients to develop a 5hmC gene signature to predict response to AZA-HiDAC-Mito in an independent test set of patients. We compared continuous variables with two-tailed Student's t-test and used the Kaplan-Meier method with log-rank test for survival analysis. Results Thirty-three patients (72%) had adequate RNA samples for RNA-seq gene expression analysis. Eighteen responded to treatment (CR +CRi) and were enriched with gene expression patterns involved in cell-cell interaction and activation of cell cycle, while non-responders (n=15) had a higher expression of leukemic stem cell (LSC) signatures. There was no difference in gene expression profile when comparing pre-treatment samples to day 5 samples after AZA exposure. From the 5hmC profiling [n=40 (87%) patients with adequate samples], increased 5hmC in LSC genes was associated with treatment resistance to AZA-HiDAC-Mito (p=0.044). The number of differentially hydroxy-methylated genes (DhMGs) increased with higher doses of AZA exposure suggesting a dose-dependent epigenetic effect from AZA. Patients with a greater number of DhMGs following 5 days of AZA treatment had improved survival (p=0.015) (Figure 1B). Using the 5hmC-based XGBoost machine learning model comparing 5hmC profiles between responders to non-responders from a training set of patients (n=22), we developed an 11-gene 5hmC pre-treatment signature (including SKP1, WNT8A, CYP2E1, and NBPF9) to predict treatment response. The model was highly effective in predicting response to therapy, with an area under the curve (AUC) of 0.86 in an independent test set of patients (n=18) treated with AZA-HiDAC-Mito (Figure 1C). Conclusion In patients with AML treated with AZA-HiDAC-Mito, a pre-treatment LSC gene expression signature enriched with 5hmC was associated with treatment resistance. More DhMGs at day 5 appear to be a dose-dependent epigenetic effect that is induced by AZA and is associated with longer survival despite the absence of an immediate change in gene expression levels. An 11-gene 5hmC pre-treatment signature may be a predictive biomarker for AZA-HiDAC-Mito therapy and other HMA-based approaches. These findings warrant validation in a larger prospective trial. Figure 1 Figure 1. Disclosures Zhang: Bristol-Myers Squibb: Current Employment. Stock: Pfizer: Consultancy, Honoraria, Research Funding; amgen: Honoraria; agios: Honoraria; jazz: Honoraria; kura: Honoraria; kite: Honoraria; morphosys: Honoraria; servier: Honoraria; syndax: Consultancy, Honoraria; Pluristeem: Consultancy, Honoraria. Odenike: Celgene, Incyte, AstraZeneca, Astex, NS Pharma, AbbVie, Gilead, Janssen, Oncotherapy, Agios, CTI/Baxalta, Aprea: Research Funding; AbbVie, Celgene, Impact Biomedicines, Novartis, Taiho Oncology, Takeda: Consultancy. He: Epican Genetech: Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company.


2021 ◽  
Vol 22 (7) ◽  
pp. 3596
Author(s):  
Rita Martín-Ramírez ◽  
Rebeca González-Fernández ◽  
Deborah Rotoli ◽  
Jairo Hernández ◽  
Pablo Martín-Vasallo ◽  
...  

Regulation of oxidative stress (OS) is important to prevent damage to female reproductive physiology. While normal OS levels may have a regulatory role, high OS levels may negatively affect vital processes such as folliculogenesis or embryogenesis. The aim of this work was to study OS induced by glucose, a reactive oxygen species generator, or peroxynitrite, a reactive nitrogen species generator, in cultured human granulosa-lutein (hGL) cells from oocyte donors, analyzing expression of genes involved in oocyte maturation (FSHR, PAPP, and CYP19A1) and OS damage response (ALDH3A2). We also evaluated the effect of celastrol as an antioxidant. Our results showed that although both glucose and peroxynitrite produce OS increments in hGL cells, only peroxynitrite treatment increases ALDH3A2 and PAPP gene expression levels and decreases FSHR gene expression levels. Celastrol pre-treatment prevents this effect of peroxynitrite. Interestingly, when celastrol alone was added, we observed a reduction of the expression of all genes studied, which was independent of both OS inductors. In conclusion, regulation of OS imbalance by antioxidant substances such as celastrol may prevent negative effects of OS in female fertility. In addition to the antioxidant activity, celastrol may well have an independent role on regulation of gene expression in hGL cells.


2020 ◽  
Vol 477 (16) ◽  
pp. 3091-3104 ◽  
Author(s):  
Luciana E. Giono ◽  
Alberto R. Kornblihtt

Gene expression is an intricately regulated process that is at the basis of cell differentiation, the maintenance of cell identity and the cellular responses to environmental changes. Alternative splicing, the process by which multiple functionally distinct transcripts are generated from a single gene, is one of the main mechanisms that contribute to expand the coding capacity of genomes and help explain the level of complexity achieved by higher organisms. Eukaryotic transcription is subject to multiple layers of regulation both intrinsic — such as promoter structure — and dynamic, allowing the cell to respond to internal and external signals. Similarly, alternative splicing choices are affected by all of these aspects, mainly through the regulation of transcription elongation, making it a regulatory knob on a par with the regulation of gene expression levels. This review aims to recapitulate some of the history and stepping-stones that led to the paradigms held today about transcription and splicing regulation, with major focus on transcription elongation and its effect on alternative splicing.


2014 ◽  
Vol 23 (03) ◽  
pp. 207-211
Author(s):  
C. Kasch ◽  
A. Osterberg ◽  
Thordis Granitzka ◽  
T. Lindner ◽  
M. Haenle ◽  
...  

SummaryThe RANK/RANKL/OPG system plays an important role in the regulation of bone metabolism and bony integration around implants. The aim of this study was to analyse gene expression of OPG, RANK, and RANKL in regenerating bone during implant integration. Additionally, the effect of intermittent para - thyroid hormone (PTH) treatment was analysed. A titanium chamber was implanted in the proximal tibiae of 48 female rats. The animals received either human PTH or saline solution (NaCl). After 21 and 42 days, RNA was isolated from tissue adjacent to the implant and expression of RANK, RANKL, and OPG was analysed. After 21 days, very low expression levels of all genes were shown. In contrast, increased gene expression after 42 days was determined. Expression of RANK and RANKL was lower than that for OPG. The lower expression levels after 21 days might be due to still ossifying, fibrotic tissue around the titanium chamber. An increased OPG synthesis rate associated with decreased RANKL expression after 42 days revealed bone-forming processes. Despite significant differences in gene expression between the time points, only slight differences were observed between application of intermittent PTH and NaCl after a period of 42 days.


Sign in / Sign up

Export Citation Format

Share Document