scholarly journals Emergence of Spatial Structure in Cell Groups and the Evolution of Cooperation

2010 ◽  
Vol 6 (3) ◽  
pp. e1000716 ◽  
Author(s):  
Carey D. Nadell ◽  
Kevin R. Foster ◽  
João B. Xavier
2009 ◽  
Vol 80 (4) ◽  
Author(s):  
Carlos P. Roca ◽  
José A. Cuesta ◽  
Angel Sánchez

2015 ◽  
Author(s):  
Jorge Peña ◽  
Bin Wu ◽  
Arne Traulsen

AbstractSpatial structure greatly affects the evolution of cooperation. While in two-player games the condition for cooperation to evolve depends on a single structure coefficient, in multiplayer games the condition might depend on several structure coefficients, making it difficult to compare different population structures. We propose a solution to this issue by introducing two simple ways of ordering population structures: the containment order and the volume order. If population structure 𝒮1 is greater than population structure 𝒮2 in the containment or the volume order, then 𝒮1 can be considered a stronger promoter of cooperation. We provide conditions for establishing the containment order, give general results on the volume order, and illustrate our theory by comparing different models of spatial games and associated update rules. Our results hold for a large class of population structures and can be easily applied to specific cases once the structure coefficients have been calculated or estimated.


2019 ◽  
Author(s):  
Chaitanya S. Gokhale ◽  
Hye Jin Park

AbstractSpatial dynamics can promote the evolution of cooperation. While dispersal processes have been studied in simple evolutionary games, real-world social dilemmas are much more complicated. The public good, in many cases, does not increase linearly as per the investment in it. When the investment is low, for example, every additional unit of the investment may help a lot to increase the public good, but the effect vanishes as the number of investments increase. Such non-linear behaviour is the norm rather than an exception in a variety of social as well as biological systems. We take into account the non-linearity in the payoffs of the public goods game as well as the natural demographic effects of population densities. Population density has also been shown to impact the evolution of co-operation. Coupling these non-linear games and population size effect together with an explicitly defined spatial structure brings us one step closer to the complexity of real eco-evolutionary spatial systems. We show how the non-linearity in payoffs, resulting in synergy or discounting of public goods can alter the effective rate of return on the cooperative investment. Synergy or discounting in public goods accumulation affects the resulting spatial structure, not just quantitatively but in some cases, drastically changing the outcomes. In cases where a linear payoff structure would lead to extinction, synergy can support the coexistence of cooperators and defectors. The combined eco-evolutionary trajectory can thus be qualitatively different in cases on non-linear social dilemmas.


2016 ◽  
Vol 13 (114) ◽  
pp. 20150881 ◽  
Author(s):  
Jorge Peña ◽  
Bin Wu ◽  
Arne Traulsen

Spatial structure greatly affects the evolution of cooperation. While in two-player games the condition for cooperation to evolve depends on a single structure coefficient, in multiplayer games the condition might depend on several structure coefficients, making it difficult to compare different population structures. We propose a solution to this issue by introducing two simple ways of ordering population structures: the containment order and the volume order. If population structure is greater than population structure in the containment or the volume order, then can be considered a stronger promoter of cooperation. We provide conditions for establishing the containment order, give general results on the volume order, and illustrate our theory by comparing different models of spatial games and associated update rules. Our results hold for a large class of population structures and can be easily applied to specific cases once the structure coefficients have been calculated or estimated.


2019 ◽  
Vol 286 (1900) ◽  
pp. 20190041 ◽  
Author(s):  
Qi Su ◽  
Aming Li ◽  
Long Wang ◽  
H. Eugene Stanley

Cooperation is key to the survival of all biological systems. The spatial structure of a system constrains who interacts with whom (interaction partner) and who acquires new traits from whom (role model). Understanding when and to what degree a spatial structure affects the evolution of cooperation is an important and challenging topic. Here, we provide an analytical formula to predict when natural selection favours cooperation where the effects of a spatial structure are described by a single parameter. We find that a spatial structure promotes cooperation (spatial reciprocity) when interaction partners overlap role models. When they do not, spatial structure inhibits cooperation even without cooperation dilemmas. Furthermore, a spatial structure in which individuals interact with their role models more often shows stronger reciprocity. Thus, imitating individuals with frequent interactions facilitates cooperation. Our findings are applicable to both pairwise and group interactions and show that strong social ties might hinder, while asymmetric spatial structures for interaction and trait dispersal could promote cooperation.


2017 ◽  
Vol 104 ◽  
pp. 503-507
Author(s):  
Peiyuan Sun ◽  
Xuesong Liu ◽  
Enze Wang ◽  
Mingfeng He ◽  
Qiuhui Pan

Nature ◽  
2004 ◽  
Vol 428 (6983) ◽  
pp. 643-646 ◽  
Author(s):  
Christoph Hauert ◽  
Michael Doebeli

2016 ◽  
Author(s):  
Jorge Peña ◽  
Bin Wu ◽  
Jordi Arranz ◽  
Arne Traulsen

AbstractThere has been much interest in studying evolutionary games in structured populations, often modelled as graphs. However, most analytical results so far have only been obtained for two-player or linear games, while the study of more complex multiplayer games has been usually tackled by computer simulations. Here we investigate evolutionary multiplayer games on graphs updated with a Moran death-Birth process. For cycles, we obtain an exact analytical condition for cooperation to be favored by natural selection, given in terms of the payoffs of the game and a set of structure coefficients. For regular graphs of degree three and larger, we estimate this condition using a combination of pair approximation and diffusion approximation. For a large class of cooperation games, our approximations suggest that graph-structured populations are stronger promoters of cooperation than populations lacking spatial structure. Computer simulations validate our analytical approximations for random regular graphs and cycles, but show systematic differences for graphs with many loops such as lattices. In particular, our simulation results show that these kinds of graphs can even lead to more stringent conditions for the evolution of cooperation than well-mixed populations. Overall, we provide evidence suggesting that the complexity arising from many-player interactions and spatial structure can be captured by pair approximation in the case of random graphs, but that it need to be handled with care for graphs with high clustering.Author SummaryCooperation can be defined as the act of providing fitness benefits to other individuals, often at a personal cost. When interactions occur mainly with neighbors, assortment of strategies can favor cooperation but local competition can undermine it. Previous research has shown that a single coefficient can capture this trade-off when cooperative interactions take place between two players. More complicated, but also more realistic models of cooperative interactions involving multiple players instead require several such coefficients, making it difficult to assess the effects of population structure. Here, we obtain analytical approximations for the coefficients of multiplayer games in graph-structured populations. Computer simulations show that, for particular instances of multiplayer games, these approximate coefficients predict the condition for cooperation to be promoted in random graphs well, but fail to do so in graphs with more structure, such as lattices. Our work extends and generalizes established results on the evolution of cooperation on graphs, but also highlights the importance of explicitly taking into account higher-order statistical associations in order to assess the evolutionary dynamics of cooperation in spatially structured populations.


Sign in / Sign up

Export Citation Format

Share Document