scholarly journals Cell-Sorting at the A/P Boundary in the Drosophila Wing Primordium: A Computational Model to Consolidate Observed Non-Local Effects of Hh Signaling

2011 ◽  
Vol 7 (4) ◽  
pp. e1002025 ◽  
Author(s):  
Sabine Schilling ◽  
Maria Willecke ◽  
Tinri Aegerter-Wilmsen ◽  
Olaf A. Cirpka ◽  
Konrad Basler ◽  
...  
2015 ◽  
Vol 26 (25) ◽  
pp. 4700-4717 ◽  
Author(s):  
Anup Parchure ◽  
Neha Vyas ◽  
Charles Ferguson ◽  
Robert G. Parton ◽  
Satyajit Mayor

Hedgehog (Hh) is a secreted morphogen involved in both short- and long-range signaling necessary for tissue patterning during development. It is unclear how this dually lipidated protein is transported over a long range in the aqueous milieu of interstitial spaces. We previously showed that the long-range signaling of Hh requires its oligomerization. Here we show that Hh is secreted in the form of exovesicles. These are derived by the endocytic delivery of cell surface Hh to multivesicular bodies (MVBs) via an endosomal sorting complex required for transport (ECSRT)–dependent process. Perturbations of ESCRT proteins have a selective effect on long-range Hh signaling in Drosophila wing imaginal discs. Of importance, oligomerization-defective Hh is inefficiently incorporated into exovesicles due to its poor endocytic delivery to MVBs. These results provide evidence that nanoscale organization of Hh regulates the secretion of Hh on ESCRT-derived exovesicles, which in turn act as a vehicle for long-range signaling.


2015 ◽  
Vol 23 (20) ◽  
pp. 26064 ◽  
Author(s):  
Rahul Trivedi ◽  
Yashna Sharma ◽  
Anuj Dhawan

2017 ◽  
Author(s):  
Juan José Mompó ◽  
Haritz Iribas ◽  
Javier Urricelqui ◽  
Alayn Loayssa
Keyword(s):  

2013 ◽  
Vol 12 (2) ◽  
pp. 055-062
Author(s):  
Stefan Pradelok ◽  
Piotr Bętkowski ◽  
Adam Rudzik ◽  
Piotr Łaziński

This paper presents a method of engineering modelling of structural details, which enables the analysis of local static and dynamic effects in a complex structure with the use of a personal computer. An analysed structural detail, modelled with the use of shell finite elements, is mounted to a spatial truss member system. Then, on the basis of prepared computational model, a static or dynamic analysis is carried out. The proposed model allows to detect the local effects in a theoretical. Conducted analyses confirmed the correct operation of such a computational model. Hence, the method of modelling presented in this paper allows to analyse the local effects on ordinary personal computer and more importantly, the results of such calculations are available within a relatively short period of time. The calculations are carried out by analysing the local effects in a steel node of the truss railway bridge.


2004 ◽  
Vol 98 (4) ◽  
pp. 345-363 ◽  
Author(s):  
Ashley P. Willis ◽  
Anvar Shukurov ◽  
Andrew M. Soward ◽  
Dmitry Sokoloff

Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1203-1212 ◽  
Author(s):  
Katerina Nestoras ◽  
Helena Lee ◽  
Jym Mohler

We have undertaken a genetic analysis of new strong alleles of knot (kn). The original kn1 mutation causes an alteration of wing patterning similar to that associated with mutations of fused (fu), an apparent fusion of veins 3 and 4 in the wing. However, unlike fu, strong kn mutations do not affect embryonic segmentation and indicate that kn is not a component of a general Hh (Hedgehog)-signaling pathway. Instead we find that kn has a specific role in those cells of the wing imaginal disc that are subject to ptc-mediated Hh-signaling. Our results suggest a model for patterning the medial portion of the Drosophila wing, whereby the separation of veins 3 and 4 is maintained by kn activation in the intervening region in response to Hh-signaling across the adjacent anterior-posterior compartment boundary.


Sign in / Sign up

Export Citation Format

Share Document