scholarly journals Increased mitochondrial protein import and cardiolipin remodelling upon early mtUPR

PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009664
Author(s):  
Daniel Poveda-Huertes ◽  
Asli Aras Taskin ◽  
Ines Dhaouadi ◽  
Lisa Myketin ◽  
Adinarayana Marada ◽  
...  

Mitochondrial defects can cause a variety of human diseases and protective mechanisms exist to maintain mitochondrial functionality. Imbalances in mitochondrial proteostasis trigger a transcriptional program, termed mitochondrial unfolded protein response (mtUPR). However, the temporal sequence of events in mtUPR is unclear and the consequences on mitochondrial protein import are controversial. Here, we have quantitatively analyzed all main import pathways into mitochondria after different time spans of mtUPR induction. Kinetic analyses reveal that protein import into all mitochondrial subcompartments strongly increases early upon mtUPR and that this is accompanied by rapid remodelling of the mitochondrial signature lipid cardiolipin. Genetic inactivation of cardiolipin synthesis precluded stimulation of protein import and compromised cellular fitness. At late stages of mtUPR upon sustained stress, mitochondrial protein import efficiency declined. Our work clarifies the enigma of protein import upon mtUPR and identifies sequential mtUPR stages, in which an early increase in protein biogenesis to restore mitochondrial proteostasis is followed by late stages characterized by a decrease in import capacity upon prolonged stress induction.

Cell ◽  
2000 ◽  
Vol 100 (5) ◽  
pp. 551-560 ◽  
Author(s):  
Yoshito Abe ◽  
Toshihiro Shodai ◽  
Takanori Muto ◽  
Katsuyoshi Mihara ◽  
Hisayoshi Torii ◽  
...  

2021 ◽  
Author(s):  
Liam P. Coyne ◽  
Xiaowen Wang ◽  
Jiyao Song ◽  
Ebbing de Jong ◽  
Karin Schneider ◽  
...  

2016 ◽  
Vol 311 (1) ◽  
pp. G180-G191 ◽  
Author(s):  
Geeta Rao ◽  
Vivek R. Yadav ◽  
Shanjana Awasthi ◽  
Pamela R. Roberts ◽  
Vibhudutta Awasthi

Gut barrier dysfunction is the major trigger for multiorgan failure associated with hemorrhagic shock (HS). Although the molecular mediators responsible for this dysfunction are unclear, oxidative stress-induced disruption of proteostasis contributes to the gut pathology in HS. The objective of this study was to investigate whether resuscitation with nanoparticulate liposome-encapsulated hemoglobin (LEH) is able to restore the gut proteostatic mechanisms. Sprague-Dawley rats were recruited in four groups: control, HS, HS+LEH, and HS+saline. HS was induced by withdrawing 45% blood, and isovolemic LEH or saline was administered after 15 min of shock. The rats were euthanized at 6 h to collect plasma and ileum for measurement of the markers of oxidative stress, unfolded protein response (UPR), proteasome function, and autophagy. HS significantly increased the protein and lipid oxidation, trypsin-like proteasome activity, and plasma levels of IFNγ. These effects were prevented by LEH resuscitation. However, saline was not able to reduce protein oxidation and plasma IFNγ in hemorrhaged rats. Saline resuscitation also suppressed the markers of UPR and autophagy below the basal levels; the HS or LEH groups showed no effect on the UPR and autophagy. Histological analysis showed that LEH resuscitation significantly increased the villus height and thickness of the submucosal and muscularis layers compared with the HS and saline groups. Overall, the results showed that LEH resuscitation was effective in normalizing the indicators of proteostasis stress in ileal tissue. On the other hand, saline-resuscitated animals showed a decoupling of oxidative stress and cellular protective mechanisms.


2016 ◽  
Vol 397 (11) ◽  
pp. 1097-1114 ◽  
Author(s):  
Sebastian P. Straub ◽  
Sebastian B. Stiller ◽  
Nils Wiedemann ◽  
Nikolaus Pfanner

Abstract Mitochondria contain elaborate machineries for the import of precursor proteins from the cytosol. The translocase of the outer mitochondrial membrane (TOM) performs the initial import of precursor proteins and transfers the precursors to downstream translocases, including the presequence translocase and the carrier translocase of the inner membrane, the mitochondrial import and assembly machinery of the intermembrane space, and the sorting and assembly machinery of the outer membrane. Although the protein translocases can function as separate entities in vitro, recent studies revealed a close and dynamic cooperation of the protein import machineries to facilitate efficient transfer of precursor proteins in vivo. In addition, protein translocases were found to transiently interact with distinct machineries that function in the respiratory chain or in the maintenance of mitochondrial membrane architecture. Mitochondrial protein import is embedded in a regulatory network that ensures protein biogenesis, membrane dynamics, bioenergetic activity and quality control.


Sign in / Sign up

Export Citation Format

Share Document