mitochondrial defects
Recently Published Documents


TOTAL DOCUMENTS

249
(FIVE YEARS 85)

H-INDEX

42
(FIVE YEARS 7)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
ChangZhi Liu ◽  
WeiRan Zhou ◽  
QuanE Liu ◽  
ZaiXin Peng

Abstract Background Mitochondrial ribosomal protein S2 (MRPS2) gene mutation, which is related to severe hypoglycemia and lactic acidosis, is rarely reported globally. Case presentation We report a case of a new MRPS2 gene mutation in a Chinese girl who presented with hypoglycemia and lactic acidosis. A homozygous C.412C > G variant that could cause complex oxidative phosphorylation deficiency and had not been reported before was identified. The clinical manifestations included recurrent vomiting, hypoglycemia, lactic acidosis, sensorineural hearing loss, and gall bladder calculi. Hypoglycemia and lactic acidosis improved after the administration of sugary liquid and supportive treatments. Conclusions Recurrent hypoglycemia with lactic acidosis and sensorineural hearing loss should lead to suspicion of mitochondrial defects and the early refinement of genetic tests.


2021 ◽  
Author(s):  
Ana J. Fernández-Alvarez ◽  
María Gabriela Thomas ◽  
Malena L. Pascual ◽  
Martín Habif ◽  
Jerónimo Pimentel ◽  
...  

Smaug is a conserved translational regulator that binds numerous mRNAs, including nuclear transcripts that encode mitochondrial enzymes. Smaug orthologs form cytosolic membrane-less organelles (MLOs) in several organisms and cell types. We have performed single-molecule FISH assays that revealed that SDHB and UQCRC1 mRNAs associate with Smaug1 bodies in U2OS cells. Loss of function of Smaug1 and Smaug2 affected both mitochondrial respiration and morphology of the mitochondrial network. Phenotype rescue by Smaug1 transfection depends on the presence of its RNA binding domain. Moreover, we identified specific Smaug1 domains involved in MLO formation, and found that impaired Smaug1 MLO condensation correlates with mitochondrial defects. Mitochondrial Complex I inhibition by rotenone –but not strong mitochondrial uncoupling by CCCP– rapidly induced Smaug1 MLOs dissolution. Metformin and rapamycin elicited similar effects, which were blocked by pharmacological inhibition of AMPK. Finally, we found that Smaug1 MLO dissolution weakens the interaction with target mRNAs, thus enabling their release. We propose that mitochondrial respiration and the AMPK/mTOR balance controls the condensation and dissolution of Smaug1 MLOs, thus regulating nuclear mRNAs that encode key mitochondrial proteins.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cesare Granata ◽  
Nikeisha J. Caruana ◽  
Javier Botella ◽  
Nicholas A. Jamnick ◽  
Kevin Huynh ◽  
...  

AbstractMitochondrial defects are implicated in multiple diseases and aging. Exercise training is an accessible, inexpensive therapeutic intervention that can improve mitochondrial bioenergetics and quality of life. By combining multiple omics techniques with biochemical and in silico normalisation, we removed the bias arising from the training-induced increase in mitochondrial content to unearth an intricate and previously undemonstrated network of differentially prioritised mitochondrial adaptations. We show that changes in hundreds of transcripts, proteins, and lipids are not stoichiometrically linked to the overall increase in mitochondrial content. Our findings suggest enhancing electron flow to oxidative phosphorylation (OXPHOS) is more important to improve ATP generation than increasing the abundance of the OXPHOS machinery, and do not support the hypothesis that training-induced supercomplex formation enhances mitochondrial bioenergetics. Our study provides an analytical approach allowing unbiased and in-depth investigations of training-induced mitochondrial adaptations, challenging our current understanding, and calling for careful reinterpretation of previous findings.


2021 ◽  
Author(s):  
Chuankai Zhou ◽  
Qingqing Liu ◽  
Catherine E. Chang ◽  
Alexandra C. Wooldredge ◽  
Benjamin Fong ◽  
...  

Mitochondrial biogenesis has two major steps: the transcriptional activation of nuclear genome-encoded mitochondrial proteins and the import of nascent mitochondrial proteins that are synthesized in the cytosol. These nascent mitochondrial proteins are aggregation-prone and can cause cytosolic proteostasis stress. The transcription factor-dependent transcriptional regulations and the TOM-TIM complex-dependent import of nascent mitochondrial proteins have been extensively studied. Yet, little is known regarding how these two steps of mitochondrial biogenesis coordinate with each other to avoid the cytosolic accumulation of these aggregation-prone nascent mitochondrial proteins. Here we show that in budding yeast, Tom70, a conserved receptor of the TOM complex, moonlights to regulate the transcriptional activity of mitochondrial proteins. Tom70's transcription regulatory role is conserved in Drosophila. The dual roles of Tom70 in both transcription/biogenesis and import of mitochondrial proteins allow the cells to accomplish mitochondrial biogenesis without compromising cytosolic proteostasis. The age-related reduction of Tom70, caused by reduced biogenesis and increased degradation of Tom70, is associated with the loss of mitochondrial membrane potential, mtDNA, and mitochondrial proteins. While loss of Tom70 accelerates aging and age-related mitochondrial defects, overexpressing TOM70 delays these mitochondrial dysfunctions and extends the replicative lifespan. Our results reveal unexpected roles of Tom70 in mitochondrial biogenesis and aging.


Author(s):  
Myriam Lizanda Piqueras ◽  
Ignacio Ventura González

Lymphoma is the most common type of blood cancer today and, as its name suggests, it begins in the lymphatic system. The origin of this disease is related to mitochondrial defects, generated by mutations in the PNPase enzyme or polynucleotide phosphorylase, whose main functions are to import and degradation mitochondrial RNA. For this reason, the main objective of the present work was to carry out a bibliographic review of scientific publications that made the role of this enzyme relevant, in relation to mitochondria as the cause of lymphatic cancer. The methodology used consisted of a bibliometric analysis based on the use of different databases, in which search equations formed from keywords were introduced. Then, the selection of articles related to the study topic and published in the last 20 years was carried out. Subsequently, the journals were analyzed, based on the H index, in order to observe which supported the hypothesis of the role of PNPase in lymphoma and which stated the opposite. The results showed that a total of 441,288 scientific publications were obtained, of which 133 were selected to carry out this work. As for the journals, those with the highest H index were Nature and Cell. It can be concluded that PNPase plays a very important role in the transport of mitochondrial RNA, and that the factor NF-Y is involved in the control of cell growth, therefore, both have a crucial role in the development of this disease. Therefore, research on both PNPase and NF-Y is essential to establish the specific genetic characteristics that define the early lesions of lymphatic cancer and the consequent determination of their treatment.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3152
Author(s):  
Naveen Mekala ◽  
Jacob Kurdys ◽  
Alexis Paige Vicenze ◽  
Leana Rose Weiler ◽  
Carmen Avramut ◽  
...  

Metabolic syndrome increases the risk for cardiovascular disease including metabolic cardiomyopathy that may progress to heart failure. The decline in mitochondrial metabolism is considered a critical pathogenic mechanism that drives this progression. Considering its cardiac specificity, we hypothesized that miR 208a regulates the bioenergetic metabolism in human cardiomyocytes exposed to metabolic challenges. We screened in silico for potential miR 208a targets focusing on mitochondrial outcomes, and we found that mRNA species for mediator complex subunit 7, mitochondrial ribosomal protein 28, stanniocalcin 1, and Sortin nexin 10 are rescued by the CRISPR deletion of miR 208a in human SV40 cardiomyocytes exposed to metabolic challenges (high glucose and high albumin-bound palmitate). These mRNAs translate into proteins that are involved in nuclear transcription, mitochondrial translation, mitochondrial integrity, and protein trafficking. MiR 208a suppression prevented the decrease in myosin heavy chain α isoform induced by the metabolic stress suggesting protection against a decrease in cardiac contractility. MiR 208a deficiency opposed the decrease in the mitochondrial biogenesis signaling pathway, mtDNA, mitochondrial markers, and respiratory properties induced by metabolic challenges. The benefit of miR 208a suppression on mitochondrial function was canceled by the reinsertion of miR 208a. In summary, miR 208a regulates mitochondrial biogenesis and function in cardiomyocytes exposed to diabetic conditions. MiR 208a may be a therapeutic target to promote mitochondrial biogenesis in chronic diseases associated with mitochondrial defects.


Life Sciences ◽  
2021 ◽  
Vol 285 ◽  
pp. 119985
Author(s):  
Shalini Mani ◽  
Geeta Swargiary ◽  
Manisha Singh ◽  
Shriya Agarwal ◽  
Abhijit Dey ◽  
...  

2021 ◽  
Vol 14 ◽  
Author(s):  
A. Kaitlyn Victor ◽  
Martin Donaldson ◽  
Daniel Johnson ◽  
Winston Miller ◽  
Lawrence T. Reiter

Background: Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by hormonal dysregulation, obesity, intellectual disability, and behavioral problems. Most PWS cases are caused by paternal interstitial deletions of 15q11.2-q13.1, while a smaller number of cases are caused by chromosome 15 maternal uniparental disomy (PW-UPD). Children with PW-UPD are at higher risk for developing autism spectrum disorder (ASD) than the neurotypical population. In this study, we used expression analysis of PW-UPD neurons to try to identify the molecular cause for increased autism risk.Methods: Dental pulp stem cells (DPSC) from neurotypical control and PWS subjects were differentiated to neurons for mRNA sequencing. Significantly differentially expressed transcripts among all groups were identified. Downstream protein analysis including immunocytochemistry and immunoblots were performed to confirm the transcript level data and pathway enrichment findings.Results: We identified 9 transcripts outside of the PWS critical region (15q11.2-q13.1) that may contribute to core PWS phenotypes. Moreover, we discovered a global reduction in mitochondrial transcripts in the PW-UPD + ASD group. We also found decreased mitochondrial abundance along with mitochondrial aggregates in the cell body and neural projections of +ASD neurons.Conclusion: The 9 transcripts we identified common to all PWS subtypes may reveal PWS specific defects during neurodevelopment. Importantly, we found a global reduction in mitochondrial transcripts in PW-UPD + ASD neurons versus control and other PWS subtypes. We then confirmed mitochondrial defects in neurons from individuals with PWS at the cellular level. Quantification of this phenotype supports our hypothesis that the increased incidence of ASD in PW-UPD subjects may arise from mitochondrial defects in developing neurons.


2021 ◽  
Vol 22 (19) ◽  
pp. 10735
Author(s):  
Yu Su ◽  
Dennis R. Claflin ◽  
Meixiang Huang ◽  
Carol S. Davis ◽  
Peter C. D. Macpherson ◽  
...  

Skeletal muscle suffers atrophy and weakness with aging. Denervation, oxidative stress, and mitochondrial dysfunction are all proposed as contributors to age-associated muscle loss, but connections between these factors have not been established. We examined contractility, mitochondrial function, and intracellular calcium transients (ICTs) in muscles of mice throughout the life span to define their sequential relationships. We performed these same measures and analyzed neuromuscular junction (NMJ) morphology in mice with postnatal deletion of neuronal Sod1 (i-mn-Sod1-/- mice), previously shown to display accelerated age-associated muscle loss and exacerbation of denervation in old age, to test relationships between neuronal redox homeostasis, NMJ degeneration and mitochondrial function. In control mice, the amount and rate of the decrease in mitochondrial NADH during contraction was greater in middle than young age although force was not reduced, suggesting decreased efficiency of NADH utilization prior to the onset of weakness. Declines in both the peak of the ICT and force were observed in old age. Muscles of i-mn-Sod1-/- mice showed degeneration of mitochondrial and calcium handling functions in middle-age and a decline in force generation to a level not different from the old control mice, with maintenance of NMJ morphology. Together, the findings support the conclusion that muscle mitochondrial function decreases during aging and in response to altered neuronal redox status prior to NMJ deterioration or loss of mass and force suggesting mitochondrial defects contribute to sarcopenia independent of denervation.


Sign in / Sign up

Export Citation Format

Share Document