scholarly journals Cell Lineage and Regional Identity of Cultured Spinal Cord Neural Stem Cells and Comparison to Brain-Derived Neural Stem Cells

PLoS ONE ◽  
2009 ◽  
Vol 4 (1) ◽  
pp. e4213 ◽  
Author(s):  
Theresa K. Kelly ◽  
Stanislav L. Karsten ◽  
Daniel H. Geschwind ◽  
Harley I. Kornblum
2013 ◽  
Vol 2 (10) ◽  
pp. 731-744 ◽  
Author(s):  
Christopher J. Sontag ◽  
Hal X. Nguyen ◽  
Noriko Kamei ◽  
Nobuko Uchida ◽  
Aileen J. Anderson ◽  
...  

Neurosurgery ◽  
2015 ◽  
Vol 79 (3) ◽  
pp. 481-491 ◽  
Author(s):  
Alexander E. Ropper ◽  
Xiang Zeng ◽  
Hariprakash Haragopal ◽  
Jamie E. Anderson ◽  
Zaid Aljuboori ◽  
...  

Abstract BACKGROUND There are currently no satisfactory treatments or experimental models showing autonomic dysfunction for intramedullary spinal cord gliomas (ISCG). OBJECTIVE To develop a rat model of ISCG and investigate whether genetically engineered human neural stem cells (F3.hNSCs) could be developed into effective therapies for ISCG. METHODS Immunodeficient/Rowett Nude rats received C6 implantation of G55 human glioblastoma cells (10K/each). F3.hNSCs engineered to express either cytosine deaminase gene only (i.e., F3.CD) or dual genes of CD and thymidine kinase (i.e., F3.CD-TK) converted benign 5-fluorocytosine and ganciclovir into oncolytic 5-fluorouracil and ganciclovir-triphosphate, respectively. ISCG rats received injection of F3.CD-TK, F3.CD, or F3.CD-TK debris near the tumor epicenter 7 days after G55 seeding, followed with 5-FC (500 mg/kg/5 mL) and ganciclovir administrations (25 mg/kg/1 mL/day × 5/each repeat, intraperitoneal injection). Per humane standards for animals, loss of weight-bearing stepping in the hindlimb was used to determine post-tumor survival. Also evaluated were autonomic functions and tumor growth rate in vivo. RESULTS ISCG rats with F3.CD-TK treatment survived significantly longer (37.5 ± 4.78 days) than those receiving F3.CD (21.5 ± 1.75 days) or F3.CD-TK debris (19.3 ± 0.85 days; n = 4/group; P <.05, median rank test), with significantly improved autonomic function and reduced tumor growth rate. F3.DC-TK cells migrated diffusively into ISCG clusters to mediate oncolytic effect. CONCLUSION Dual gene-engineered human neural stem cell regimen markedly prolonged survival in a rat model that emulates somatomotor and autonomic dysfunctions of human cervical ISCG. F3.CD-TK may provide a novel approach to treating clinical ISCG.


Cytotherapy ◽  
2010 ◽  
Vol 12 (3) ◽  
pp. 313-325 ◽  
Author(s):  
Siobhan S. McMahon ◽  
Silke Albermann ◽  
Gemma E. Rooney ◽  
Georgina Shaw ◽  
Yolanda Garcia ◽  
...  

2022 ◽  
Author(s):  
Jianwu Dai ◽  
Yunlong Zou ◽  
Yanyun Yin ◽  
Zhifeng Xiao ◽  
Yannan Zhao ◽  
...  

Numerous studies have indicated that microgravity induces various changes in the cellular functions of neural stem cells (NSCs), and the use of microgravity to culture tissue engineering seed cells for...


Sign in / Sign up

Export Citation Format

Share Document