scholarly journals Loss of the Heparan Sulfate Sulfotransferase, Ndst1, in Mammary Epithelial Cells Selectively Blocks Lobuloalveolar Development in Mice

PLoS ONE ◽  
2010 ◽  
Vol 5 (5) ◽  
pp. e10691 ◽  
Author(s):  
Brett E. Crawford ◽  
Omai B. Garner ◽  
Joseph R. Bishop ◽  
David Y. Zhang ◽  
Kevin T. Bush ◽  
...  
1981 ◽  
Vol 91 (1) ◽  
pp. 281-286 ◽  
Author(s):  
G David ◽  
M Bernfield

When mouse mammary epithelial cells are cultured on a plastic substratum, no basal lamina forms. When cultured on a type I collagen gel, the rate of glycosaminoglycan (GAG) synthesis is unchanged, but the rate of GAG degradation is markedly reduced and a GAG-rich, basal lamina-like structure accumulates. This effect of collagen was investigated by comparing the culture distribution, nature, and metabolic stability of the 35S-GAG-containing molecules produced by cells on plastic and collagen. During 48 h of labeling with 35SO4, cultures on collagen accumulate 1.4-fold more 35S-GAG per microgram of DNA. In these cultures, most of the extracellular 35S-GAG is immobilized with the lamina and collagen gel, whereas in cultures on plastic all extracellular 35S-GAG is soluble. On both substrata, the cells produce several heparan sulfate-rich 35S-proteoglycan fractions that are distinct by Sepharose CL-4B chromatography. The culture types contain similar amounts of each fraction, except that collagen cultures contain nearly four times more of a fraction that is found largely bound to the lamina and collagen gel. During a chase this proteoglycan fraction is stable in cultures on collagen, but is extensively degraded in cultures on plastic. Thus, collagen-induced formation of a basal lamina correlates with reduced degradation and enhanced accumulation of a specific heparan sulfate-rich proteoglycan fraction. Immobilization and stabilization of basal laminar proteoglycan(s) by interstitial collagen may be a physiological mechanism of basal lamina maintenance and assembly.


1985 ◽  
Vol 101 (3) ◽  
pp. 976-984 ◽  
Author(s):  
M Jalkanen ◽  
H Nguyen ◽  
A Rapraeger ◽  
N Kurn ◽  
M Bernfield

Mouse mammary epithelial cells, of the normal murine mammary gland (NMuMG) cell line, bear a heparan sulfate-rich proteoglycan (HSPG) on their surfaces. A hybridoma (281-2) secreting a monoclonal antibody that recognizes this HSPG was produced by fusion of SP-2/0 myeloma cells with spleen cells from rats immunized with NMuMG cells. The 281-2 monoclonal antibody is directed against the core protein of the cell surface HSPG, as demonstrated by (a) recognition of the isolated proteoglycan but not its glycosaminoglycan chains, (b) co-localization of 281-2-specific antigen and radioactive cell surface HSPG on gradient polyacrylamide gel electrophoresis and on isopycnic centrifugation, and (c) abolition of immunofluorescent staining of the NMuMG cell surface by the intact, but not the protease-digested ectodomain of the cell surface HSPG. The antibody is specific for cell surface HSPG and does not recognize the HSPG that accumulates extracellularly beneath the basal cell surface. Therefore, the 281-2 antibody may be used to isolate the cell surface HSPG and to explore its distribution in tissues.


Sign in / Sign up

Export Citation Format

Share Document