scholarly journals Inhibition of Striatal Soluble Guanylyl Cyclase-cGMP Signaling Reverses Basal Ganglia Dysfunction and Akinesia in Experimental Parkinsonism

PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e27187 ◽  
Author(s):  
Kuei Y. Tseng ◽  
Adriana Caballero ◽  
Alexander Dec ◽  
Daryn K. Cass ◽  
Natalie Simak ◽  
...  
2021 ◽  
pp. mbc.E21-04-0171
Author(s):  
Peter J.M. van Haastert ◽  
Ineke Keizer-Gunnink ◽  
Henderikus Pots ◽  
Claudia Ortiz-Mateos ◽  
Douwe Veltman ◽  
...  

In Dictyostelium chemoattractants induce a fast cGMP response that mediates myosin filament formation in the rear of the cell. The major cGMP signaling pathway consists of a soluble guanylyl cyclase sGC, a cGMP-stimulated cGMP-specific phosphodiesterase and the cGMP-target protein GbpC. Here we combine published experiments with many unpublished experiments performed in the past 45 years on the regulation and function of the cGMP signaling pathway. The chemoattractants stimulate heterotrimeric Gαβγ and monomeric Ras proteins. A fraction of the soluble guanylyl cyclase sGC binds with high affinity to a limited number of membrane binding site, which is essential for sGC to become activated by Ras and Gα proteins. sGC can also bind to F-actin; binding to branched F-actin in pseudopods enhances basal sGC activity, whereas binding to parallel F-actin in the cortex reduces sGC activity. The cGMP pathway mediates cell polarity by inhibiting the rear: in unstimulated cells by sGC activity in the branched F-actin of pseudopods, in a shallow gradient by stimulated cGMP formation in pseudopods at the leading edge, and during cAMP oscillation to erase the previous polarity and establish a new polarity axis that aligns with the direction of the passing cAMP wave.


2017 ◽  
Vol 313 (1) ◽  
pp. C11-C26 ◽  
Author(s):  
Aline M. S. Yamashita ◽  
Maryana T. C. Ancillotti ◽  
Luciana P. Rangel ◽  
Marcio Fontenele ◽  
Cicero Figueiredo-Freitas ◽  
...  

Nitric oxide (NO) contributes to myogenesis by regulating the transition between myoblast proliferation and fusion through cGMP signaling. NO can form S-nitrosothiols (RSNO), which control signaling pathways in many different cell types. However, neither the role of RSNO content nor its regulation by the denitrosylase activity of S-nitrosoglutathione reductase (GSNOR) during myogenesis is understood. Here, we used primary cultures of chick embryonic skeletal muscle cells to investigate whether changes in intracellular RSNO alter proliferation and fusion of myoblasts in the presence and absence of cGMP. Cultures were grown to fuse most of the myoblasts into myotubes, with and without S-nitrosocysteine (CysNO), 8-Br-cGMP, DETA-NO, or inhibitors for NO synthase (NOS), GSNOR, soluble guanylyl cyclase (sGC), or a combination of these, followed by analysis of GSNOR activity, protein expression, RSNO, cGMP, and cell morphology. Although the activity of GSNOR increased progressively over 72 h, inhibiting GSNOR (by GSNOR inhibitor – GSNORi – or by knocking down GSNOR with siRNA) produced an increase in RSNO and in the number of myoblasts and fibroblasts, accompanied by a decrease in myoblast fusion index. This was also detected with CysNO supplementation. Enhanced myoblast number was proportional to GSNOR inhibition. Effects of the GSNORi and GSNOR knockdown were blunted by NOS inhibition, suggesting their dependence on NO synthesis. Interestingly, GSNORi and GSNOR knockdown reversed the attenuated proliferation obtained with sGC inhibition in myoblasts, but not in fibroblasts. Hence myoblast proliferation is enhanced by increasing RSNO, and regulated by GSNOR activity, independently of cGMP production and signaling.


2020 ◽  
Vol 295 (24) ◽  
pp. 8145-8154 ◽  
Author(s):  
Yue Dai ◽  
Elizabeth A. Sweeny ◽  
Simon Schlanger ◽  
Arnab Ghosh ◽  
Dennis J. Stuehr

Soluble guanylyl cyclase (sGC) is a key component of NO–cGMP signaling in mammals. Although heme must bind in the sGC β1 subunit (sGCβ) for sGC to function, how heme is delivered to sGCβ remains unknown. Given that GAPDH displays properties of a heme chaperone for inducible NO synthase, here we investigated whether heme delivery to apo-sGCβ involves GAPDH. We utilized an sGCβ reporter construct, tetra-Cys sGCβ, whose heme insertion can be followed by fluorescence quenching in live cells, assessed how lowering cell GAPDH expression impacts heme delivery, and examined whether expressing WT GAPDH or a GAPDH variant defective in heme binding recovers heme delivery. We also studied interaction between GAPDH and sGCβ in cells and their complex formation and potential heme transfer using purified proteins. We found that heme delivery to apo-sGCβ correlates with cellular GAPDH expression levels and depends on the ability of GAPDH to bind intracellular heme, that apo-sGCβ associates with GAPDH in cells and dissociates when heme binds sGCβ, and that the purified GAPDH–heme complex binds to apo-sGCβ and transfers its heme to sGCβ. On the basis of these results, we propose a model where GAPDH obtains mitochondrial heme and then forms a complex with apo-sGCβ to accomplish heme delivery to sGCβ. Our findings illuminate a critical step in sGC maturation and uncover an additional mechanism that regulates its activity in health and disease.


2001 ◽  
Vol 12 (11) ◽  
pp. 2209-2220 ◽  
Author(s):  
FRANZISKA THEILIG ◽  
MAGDALENA BOSTANJOGLO ◽  
HERMANN PAVENSTÄDT ◽  
CLEMENS GRUPP ◽  
GUDRUN HOLLAND ◽  
...  

Abstract. Soluble guanylyl cyclase (sGC) catalyzes the biosynthesis of cGMP in response to binding of L-arginine-derived nitric oxide (NO). Functionally, the NO-sGC-cGMP signaling pathway in kidney and liver has been associated with regional hemodynamics and the regulation of glomerular parameters. The distribution of the ubiquitous sGC isoform α1β1 sGC was studied with a novel, highly specific antibody against the β1 subunit. In parallel, the presence of mRNA encoding both subunits was investigated by using in situ hybridization and reverse transcription-PCR assays. The NO-induced, sGC-dependent accumulation of cGMP in cytosolic extracts of tissues and cells was measured in vitro. Renal glomerular arterioles, including the renin-producing granular cells, mesangium, and descending vasa recta, as well as cortical and medullary interstitial fibroblasts, expressed sGC. Stimulation of isolated mesangial cells, renal fibroblasts, and hepatic Ito cells with a NO donor resulted in markedly increased cytosolic cGMP levels. This assessment of sGC expression and activity in vascular and interstitial cells of kidney and liver may have implications for understanding the role of local cGMP signaling cascades.


2012 ◽  
Vol 120 (10) ◽  
Author(s):  
LS Hoffmann ◽  
J Etzrodt ◽  
S Marx ◽  
A Friebe ◽  
A Pfeifer

2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Anthony R West ◽  
Diana J Park ◽  
Stephen Sammut ◽  
Elizabeth Sunu ◽  
Michael J Park ◽  
...  

Redox Biology ◽  
2021 ◽  
Vol 39 ◽  
pp. 101832
Author(s):  
Arnab Ghosh ◽  
Cynthia J. Koziol-White ◽  
William F. Jester ◽  
Serpil C. Erzurum ◽  
Kewal Asosingh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document