scholarly journals Transcriptional Profiling of Human Brain Endothelial Cells Reveals Key Properties Crucial for Predictive In Vitro Blood-Brain Barrier Models

PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e38149 ◽  
Author(s):  
Eduard Urich ◽  
Stanley E. Lazic ◽  
Juliette Molnos ◽  
Isabelle Wells ◽  
Per-Ola Freskgård
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marlyn D. Laksitorini ◽  
Vinith Yathindranath ◽  
Wei Xiong ◽  
Sabine Hombach-Klonisch ◽  
Donald W. Miller

AbstractWnt/β-catenin signaling is important for blood-brain barrier (BBB) development and is implicated in BBB breakdown under various pathophysiological conditions. In the present study, a comprehensive characterization of the relevant genes, transport and permeability processes influenced by both the autocrine and external activation of Wnt signaling in human brain endothelial cells was examined using hCMEC/D3 culture model. The hCMEC/D3 expressed a full complement of Wnt ligands and receptors. Preventing Wnt ligand release from hCMEC/D3 produced minimal changes in brain endothelial function, while inhibition of intrinsic/autocrine Wnt/β-catenin activity through blocking β-catenin binding to Wnt transcription factor caused more modest changes. In contrast, activation of Wnt signaling using exogenous Wnt ligand (Wnt3a) or LiCl (GSK3 inhibitor) improved the BBB phenotypes of the hCMEC/D3 culture model, resulting in reduced paracellular permeability, and increased P-glycoprotein (P-gp) and breast cancer resistance associated protein (BCRP) efflux transporter activity. Further, Wnt3a reduced plasmalemma vesicle associated protein (PLVAP) and vesicular transport activity in hCMEC/D3. Our data suggest that this in vitro model of the BBB has a more robust response to exogenous activation of Wnt/β-catenin signaling compared to autocrine activation, suggesting that BBB regulation may be more dependent on external activation of Wnt signaling within the brain microvasculature.


PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e70233 ◽  
Author(s):  
Roberta Paolinelli ◽  
Monica Corada ◽  
Luca Ferrarini ◽  
Kavi Devraj ◽  
Cédric Artus ◽  
...  

2018 ◽  
Vol 315 (4) ◽  
pp. E531-E542 ◽  
Author(s):  
Maria Hersom ◽  
Hans C. Helms ◽  
Christoffer Schmalz ◽  
Thomas Å. Pedersen ◽  
Stephen T. Buckley ◽  
...  

Insulin and its receptor are known to be present and functional in the brain. Insulin cerebrospinal fluid concentrations have been shown to correlate with plasma levels of insulin in a nonlinear fashion, indicative of a saturable transport pathway from the blood to the brain interstitial fluid. The aim of the present study was to investigate whether insulin was transported across brain endothelial cells in vitro via an insulin receptor-dependent pathway. The study showed that the insulin receptor was expressed at both the mRNA and protein levels in bovine brain endothelial cells. Luminally applied radiolabeled insulin showed insulin receptor-mediated binding to the endothelial cells. This caused a dose-dependent increase in Akt-phosphorylation, which was inhibited by coapplication of an insulin receptor inhibitor, s961, demonstrating activation of insulin receptor signaling pathways. Transport of insulin across the blood-brain barrier in vitro was low and comparable to that of a similarly sized paracellular marker. Furthermore, insulin transport was not inhibited by coapplication of an excess of unlabeled insulin or an insulin receptor inhibitor. The insulin transport and uptake studies were repeated in mouse brain endothelial cells demonstrating similar results. Although it cannot be ruled out that culture-induced changes in the cell model could have impaired a potential insulin transport mechanism, these in vitro data indicate that peripheral insulin must reach the brain parenchyma through alternative pathways rather than crossing the blood-brain barrier via receptor mediated transcytosis.


Sign in / Sign up

Export Citation Format

Share Document