scholarly journals LAMMER Kinase LkhA Plays Multiple Roles in the Vegetative Growth and Asexual and Sexual Development of Aspergillus nidulans

PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e58762 ◽  
Author(s):  
Eun-Hye Kang ◽  
Ji-ae Kim ◽  
Hyun-Woo Oh ◽  
Hee-Moon Park
1993 ◽  
Vol 13 (8) ◽  
pp. 4465-4476
Author(s):  
K E Kirk ◽  
N R Morris

The filamentous fungus Aspergillus nidulans has two genes encoding alpha-tubulin, tubA and tubB, which are differentially required at distinct stages during the life cycle. The tubA gene is required during vegetative growth for mitosis and nuclear migration (B. R. Oakley, C. E. Oakley, and J. E. Rinehart, Mol. Gen. Genet. 208:135-144, 1987; P. Doshi, C. A. Bossie, J. H. Doonan, G. S. May, and N. R. Morris, Mol. Gen. Genet. 225:129-141, 1991). The tubB gene is not required for any detectable aspect of vegetative growth or asexual reproduction but is essential during sexual development prior to the first meiotic division (K. E. Kirk and N. R. Morris, Genes Dev. 5:2014-2023, 1991). In this study, we determined whether the role of each alpha-tubulin gene is to provide a specific isotype necessary for a particular microtubule function or whether either alpha-tubulin isotype, if present in sufficient quantities, can participate effectively in all types of microtubule. Strains carrying a deletion allele of tubB (tubB delta) produce no ascospores from a cross. When one copy of a plasmid containing the region upstream of the tubB gene fused to the tubA coding region was integrated into a tubB delta strain, ascosporogenesis proceeded beyond the tubB delta block and resulted in the formation of sexual spores. However, irregular numbers of spores formed in some asci during development, and the ascospores had greatly diminished viability and aberrant morphologies. These defects were nearly corrected when two additional copies of the tubA coding region were integrated into the tubB delta strain. These results indicate that the tubA alpha-tubulin isotype can form functional microtubules during sexual development in the absence of tubB protein. In a reciprocal set of experiments, we examined whether upregulation of tubB can complement the tubA4 mutation, which causes supersensitivity to benomyl during vegetative growth. When tubA4 strains integrated a plasmid containing an alcohol-inducible promoter joined to the tubB coding region and subsequently overexpressed the tubB isotype, the benomyl supersensitivity normally caused by the tubA4 allele was relieved. These results indicate that when enough tubB alpha-tubulin is supplied, strains lacking functional tubA isotype can still form microtubules which effectively carry out mitosis and nuclear migration.


1993 ◽  
Vol 13 (8) ◽  
pp. 4465-4476 ◽  
Author(s):  
K E Kirk ◽  
N R Morris

The filamentous fungus Aspergillus nidulans has two genes encoding alpha-tubulin, tubA and tubB, which are differentially required at distinct stages during the life cycle. The tubA gene is required during vegetative growth for mitosis and nuclear migration (B. R. Oakley, C. E. Oakley, and J. E. Rinehart, Mol. Gen. Genet. 208:135-144, 1987; P. Doshi, C. A. Bossie, J. H. Doonan, G. S. May, and N. R. Morris, Mol. Gen. Genet. 225:129-141, 1991). The tubB gene is not required for any detectable aspect of vegetative growth or asexual reproduction but is essential during sexual development prior to the first meiotic division (K. E. Kirk and N. R. Morris, Genes Dev. 5:2014-2023, 1991). In this study, we determined whether the role of each alpha-tubulin gene is to provide a specific isotype necessary for a particular microtubule function or whether either alpha-tubulin isotype, if present in sufficient quantities, can participate effectively in all types of microtubule. Strains carrying a deletion allele of tubB (tubB delta) produce no ascospores from a cross. When one copy of a plasmid containing the region upstream of the tubB gene fused to the tubA coding region was integrated into a tubB delta strain, ascosporogenesis proceeded beyond the tubB delta block and resulted in the formation of sexual spores. However, irregular numbers of spores formed in some asci during development, and the ascospores had greatly diminished viability and aberrant morphologies. These defects were nearly corrected when two additional copies of the tubA coding region were integrated into the tubB delta strain. These results indicate that the tubA alpha-tubulin isotype can form functional microtubules during sexual development in the absence of tubB protein. In a reciprocal set of experiments, we examined whether upregulation of tubB can complement the tubA4 mutation, which causes supersensitivity to benomyl during vegetative growth. When tubA4 strains integrated a plasmid containing an alcohol-inducible promoter joined to the tubB coding region and subsequently overexpressed the tubB isotype, the benomyl supersensitivity normally caused by the tubA4 allele was relieved. These results indicate that when enough tubB alpha-tubulin is supplied, strains lacking functional tubA isotype can still form microtubules which effectively carry out mitosis and nuclear migration.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Zheng Wang ◽  
Cristina Miguel-Rojas ◽  
Francesc Lopez-Giraldez ◽  
Oded Yarden ◽  
Frances Trail ◽  
...  

ABSTRACTFungal spores germinate and undergo vegetative growth, leading to either asexual or sexual reproductive dispersal. Previous research has indicated that among developmental regulatory genes, expression is conserved across nutritional environments, whereas pathways for carbon and nitrogen metabolism appear highly responsive—perhaps to accommodate differential nutritive processing. To comprehensively investigate conidial germination and the adaptive life history decision-making underlying these two modes of reproduction, we profiled transcription ofNeurospora crassagerminating on two media: synthetic Bird medium, designed to promote asexual reproduction; and a natural maple sap medium, on which both asexual reproduction and sexual reproduction manifest. A later start to germination but faster development was observed on synthetic medium. Metabolic genes exhibited altered expression in response to nutrients—at least 34% of the genes in the genome were significantly downregulated during the first two stages of conidial germination on synthetic medium. Knockouts of genes exhibiting differential expression across development altered germination and growth rates, as well as in one case causing abnormal germination. A consensus Bayesian network of these genes indicated especially tight integration of environmental sensing, asexual and sexual development, and nitrogen metabolism on a natural medium, suggesting that in natural environments, a more dynamic and tentative balance of asexual and sexual development may be typical ofN. crassacolonies.IMPORTANCEOne of the most remarkable successes of life is its ability to flourish in response to temporally and spatially varying environments. Fungi occupy diverse ecosystems, and their sensitivity to these environmental changes often drives major fungal life history decisions, including the major switch from vegetative growth to asexual or sexual reproduction. Spore germination comprises the first and simplest stage of vegetative growth. We examined the dependence of this early life history on the nutritional environment using genome-wide transcriptomics. We demonstrated that for developmental regulatory genes, expression was generally conserved across nutritional environments, whereas metabolic gene expression was highly labile. The level of activation of developmental genes did depend on current nutrient conditions, as did the modularity of metabolic and developmental response network interactions. This knowledge is critical to the development of future technologies that could manipulate fungal growth for medical, agricultural, or industrial purposes.


2012 ◽  
Vol 3 (1) ◽  
Author(s):  
Sei-Jin Lee ◽  
Dong-Min Han ◽  
Keon-Sang Chae ◽  
Dae-Hyuk Kim ◽  
Tae-Boong Uhm ◽  
...  

2011 ◽  
Vol 49 (3) ◽  
pp. 418-430 ◽  
Author(s):  
Sang-Cheol Jun ◽  
Sei-Jin Lee ◽  
Hyun-Joo Park ◽  
Ji-Young Kang ◽  
Young-Eun Leem ◽  
...  

2013 ◽  
Vol 13 (2) ◽  
pp. 295-303 ◽  
Author(s):  
Shizhu Zhang ◽  
Hailin Zheng ◽  
Nanbiao Long ◽  
Natalia Carbó ◽  
Peiying Chen ◽  
...  

ABSTRACTCalcium-mediated signaling pathways are widely employed in eukaryotes and are implicated in the regulation of diverse biological processes. InSaccharomyces cerevisiae, at least two different calcium uptake systems have been identified: the high-affinity calcium influx system (HACS) and the low-affinity calcium influx system (LACS). Compared to the HACS, the LACS in fungi is not well known. In this study, FigA, a homolog of the LACS member Fig1 fromS. cerevisiae, was functionally characterized in the filamentous fungusAspergillus nidulans. Loss offigAresulted in retardant hyphal growth and a sharp reduction of conidial production. Most importantly, FigA is essential for the homothallic mating (self-fertilization) process; further, FigA is required for heterothallic mating (outcrossing) in the absence of HACSmidA. Interestingly, in afigAdeletion mutant, adding extracellular Ca2+rescued the hyphal growth defects but could not restore asexual and sexual reproduction. Furthermore, quantitative PCR results revealed thatfigAdeletion sharply decreased the expression ofbrlAandnsdD, which are known as key regulators during asexual and sexual development, respectively. In addition, green fluorescent protein (GFP) tagging at the C terminus of FigA (FigA::GFP) showed that FigA localized to the center of the septum in mature hyphal cells, to the location between vesicles and metulae, and between the junctions of metulae and phialides in conidiophores. Thus, our findings suggest that FigA, apart from being a member of a calcium uptake system inA. nidulans, may play multiple unexplored roles during hyphal growth and asexual and sexual development.


PLoS ONE ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. e0216094 ◽  
Author(s):  
Eszter Bokor ◽  
Judit Ámon ◽  
Kabichandra Keisham ◽  
Zoltán Karácsony ◽  
Csaba Vágvölgyi ◽  
...  

2000 ◽  
Vol 37 (1) ◽  
pp. 28-41 ◽  
Author(s):  
Bernd Hoffmann ◽  
Christoph Wanke ◽  
S. Kirsten LaPaglia ◽  
Gerhard H. Braus

Sign in / Sign up

Export Citation Format

Share Document