scholarly journals Myeloperoxidase-Derived Oxidants Induce Blood-Brain Barrier Dysfunction In Vitro and In Vivo

PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e64034 ◽  
Author(s):  
Andreas Üllen ◽  
Evelin Singewald ◽  
Viktoria Konya ◽  
Günter Fauler ◽  
Helga Reicher ◽  
...  
PLoS ONE ◽  
2017 ◽  
Vol 12 (5) ◽  
pp. e0177447 ◽  
Author(s):  
Takashi Machida ◽  
Fuyuko Takata ◽  
Junichi Matsumoto ◽  
Tomoyuki Miyamura ◽  
Ryosuke Hirata ◽  
...  

2021 ◽  
Author(s):  
Geoffrey Potjewyd ◽  
Katherine Kellett ◽  
Nigel M Hooper

The neurovascular unit (NVU), consisting of neurons, glial cells, vascular cells (endothelial cells, pericytes and vascular smooth muscle cells) together with the surrounding extracellular matrix (ECM), is an important interface between the peripheral blood and the brain parenchyma. Disruption of the NVU impacts on blood-brain barrier (BBB) regulation and underlies the development and pathology of multiple neurological disorders, including stroke and Alzheimer’s disease. The ability to differentiate induced pluripotent stem cells (iPSCs) to the different cell types of the NVU and incorporate them into physical models provides a reverse engineering approach to generate human NVU models to study BBB function. To recapitulate the in vivo situation such NVU models must also incorporate the ECM to provide a 3D environment with appropriate mechanical and biochemical cues for the cells of the NVU. In this review we provide an overview of the cells of the NVU and the surrounding ECM, before discussing the characteristics (stiffness, functionality and porosity) required of hydrogels to mimic the ECM when incorporated into in vitro NVU models. We summarise the approaches available to measure BBB functionality and present the techniques in use to develop robust and translatable models of the NVU, including transwell models, hydrogel models, 3D-bioprinting, microfluidic models and organoids. The incorporation of iPSCs either without or with disease-specific genetic mutations into these NVU models provides a platform in which to study normal and disease mechanisms, test BBB permeability to drugs, screen for new therapeutic targets and drugs, or to design cell-based therapies.


Neuroscience ◽  
2017 ◽  
Vol 350 ◽  
pp. 146-157 ◽  
Author(s):  
Takashi Machida ◽  
Shinya Dohgu ◽  
Fuyuko Takata ◽  
Junichi Matsumoto ◽  
Ikuya Kimura ◽  
...  

2005 ◽  
Vol 289 (5) ◽  
pp. H2012-H2019 ◽  
Author(s):  
Melissa A. Fleegal ◽  
Sharon Hom ◽  
Lindsay K. Borg ◽  
Thomas P. Davis

The blood-brain barrier (BBB) is a metabolic and physiological barrier important for maintaining brain homeostasis. The aim of this study was to determine the role of PKC activation in BBB paracellular permeability changes induced by hypoxia and posthypoxic reoxygenation using in vitro and in vivo BBB models. In rat brain microvessel endothelial cells (RMECs) exposed to hypoxia (1% O2-99% N2; 24 h), a significant increase in total PKC activity was observed, and this was reduced by posthypoxic reoxygenation (95% room air-5% CO2) for 2 h. The expression of PKC-βII, PKC-γ, PKC-η, PKC-μ, and PKC-λ also increased following hypoxia (1% O2-99% N2; 24 h), and these protein levels remained elevated following posthypoxic reoxygenation (95% room air-5% CO2; 2 h). Increases in the expression of PKC-ε and PKC-ζ were also observed following posthypoxic reoxygenation (95% room air-5% CO2; 2 h). Moreover, inhibition of PKC with chelerythrine chloride (10 μM) attenuated the hypoxia-induced increases in [14C]sucrose permeability. Similar to what was observed in RMECs, total PKC activity was also stimulated in cerebral microvessels isolated from rats exposed to hypoxia (6% O2-94% N2; 1 h) and posthypoxic reoxygenation (room air; 10 min). In contrast, hypoxia (6% O2-94% N2; 1 h) and posthypoxic reoxygenation (room air; 10 min) significantly increased the expression levels of only PKC-γ and PKC-θ in the in vivo hypoxia model. These data demonstrate that hypoxia-induced BBB paracellular permeability changes occur via a PKC-dependent mechanism, possibly by differentially regulating the protein expression of the 11 PKC isozymes.


2018 ◽  
Vol 503 (3) ◽  
pp. 1885-1890 ◽  
Author(s):  
Ryoma Kayano ◽  
Yoichi Morofuji ◽  
Shinsuke Nakagawa ◽  
Shuji Fukuda ◽  
Daisuke Watanabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document