brain microvessel
Recently Published Documents


TOTAL DOCUMENTS

261
(FIVE YEARS 13)

H-INDEX

52
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Kalpani N. Udeni Galpayage Dona ◽  
Jonathan Franklin Hale ◽  
Tobi Salako ◽  
Akanksha Anandanatarajan ◽  
Kiet A. Tran ◽  
...  

Tissue engineering of the blood-brain barrier (BBB) in vitro has been rapidly expanding to address the challenges of mimicking the native structure and function of the BBB. Most of these models utilize 2D conventional microfluidic techniques. However, 3D microvascular models offer the potential to more closely recapitulate the cytoarchitecture and multicellular arrangement of in vivo microvasculature, and also can recreate branching and network topologies of the vascular bed. In this perspective, we discuss current 3D brain microvessel modeling techniques including templating, printing, and self-assembling capillary networks. Furthermore, we address the use of biological matrices and fluid dynamics. Finally, key challenges are identified along with future directions that will improve development of next generation of brain microvasculature models.


2021 ◽  
Author(s):  
Zhengrong Zhang ◽  
Hana Na ◽  
Qini Gan ◽  
Qiushan Tao ◽  
Yuriy Alekseyev ◽  
...  

BACKGROUND: C-reactive protein (CRP) in peripheral inflammation is associated with increased Alzheimer disease (AD) risk in Apolipoprotein E4 (ApoE4), but not ApoE3 or E2, humans. It remains unknown whether peripheral monomeric CRP (mCRP) induces AD pathogenesis through some receptor of blood-facing endothelia in the brain in an ApoE genotype dependent fashion. METHODS: We used human samples, ApoE knock-in and deficient mouse models, and primary brain endothelia. Different ApoE mice were intraperitoneally (i.p.) injected with mCRP. The characterizations by immunostaining, proximity ligation assay (PLA) and siRNA were conducted to identify the receptor for mCRP. Brain microvessel and endothelia were isolated for RNA sequencing to explore the molecular pathway. RESULTS: We demonstrate that CD31 (PECAM-1), a blood-facing endothelial receptor in brain, is a competitive target of both mCRP and ApoE protein. ApoE2 competes more strongly with mCRP for CD31 than ApoE4 does, and expressing ApoE4 or knocking out ApoE gene results in higher levels of mCRP-CD31 binding, leading to a decrease of CD31 expression but an increase in CD31 phosphorylation, along with greater cerebrovascular damage and AD pathology. This competitive binding mediates differential endothelial molecular responses depending on ApoE genotype, increasing cerebrovascular inflammation and mitochondria impairment in ApoE4 mice, while inducing vasculogenesis and protective changes in the presence of ApoE2. CONCLUSIONS: Our study reveals a novel and dynamic endothelial ApoE-mCRP-CD31 pathway for AD pathogenesis during chronic inflammation and provides some insight into the opposing ApoE4-neurodegenerative and ApoE2-neuroprotective effects in AD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Runfang Zhang ◽  
Tingkui Zhao ◽  
Beibei Zheng ◽  
Yun Zhang ◽  
Xiaohui Li ◽  
...  

In this paper, a curcumin derivative Cur20 was synthesized for better hydrolytic stability, which showed a higher angiogenic effect on zebrafish model than curcumin. In order to reveal the potential effects on neuroprotection, a mouse model of vascular dementia (VaD) induced by permanent right common carotid artery occlusion (rUCCAO) was established. After two weeks of curcumin administration, the cognitive function of mice was detected by Morris water maze and Y maze. The alteration on oxidative injuries and morphological damage were also analyzed by reactive oxygen species, superoxide dismutase, GSH, malondialdehyde tests, and Nissl stain on cortex/hippocampus. The angiogenesis and related signal factors were evaluated as well. The results showed that Cur20 significantly attenuated the cognitive dysfunction and histopathological changes of the VaD mice with enhanced antioxidant system and angiogenesis. In addition, primary rat brain microvessel endothelial cells (rBMECs) with oxygen glucose deprivation (OGD) were applied to further verify the possible mechanisms of Cur20-induced angiogenesis. The results demonstrated that the proliferation effect and the activation of pro-angiogenesis factors such as HIF-1α, VEGF, and TFEB might contribute to the protection of ischemic injury. Based on the above, our conclusion is that Cur20 can be considered as a promising therapeutic strategy for VaD.


2021 ◽  
Vol 16 (1) ◽  
pp. 1053-1063
Author(s):  
Shanwu Wu ◽  
Sheng Yang ◽  
Hongyan Qu

Abstract Oxidized low-density lipoprotein (ox-LDL) is a significant risk factor for various brain vascular diseases. Circular RNA (circRNA) is involved in the pathogenesis of brain vascular diseases. This study revealed the roles of circ_CHFR in ox-LDL-mediated cell proliferation, apoptosis, and endothelial-to-mesenchymal transition (EndoMT). Our results showed that circ_CHFR and EGFR expressions were dramatically upregulated, while miR-15a-5p expression was downregulated in ox-LDL-induced human brain microvessel endothelial cells (HBMECs) relative to control groups. circ_CHFR knockdown hindered the effects of ox-LDL exposure on cell proliferation, cell cycle, apoptosis, and EndoMT in HBMECs, whereas these impacts were abolished by miR-15a-5p inhibitor. In addition, circ_CHFR functioned as a sponge of miR-15a-5p and miR-15a-5p bound to EGFR. Thus, we concluded that circ_CHFR silencing hindered ox-LDL-mediated cell proliferation, apoptosis, and EndoMT by downregulating EGFR expression through sponging miR-15a-5p in HBMECs. Our findings provide a new mechanism for studying circRNA-directed therapy in ox-LDL-induced human brain vascular diseases.


2021 ◽  
Vol 67 (2) ◽  
pp. 150-157
Author(s):  
G.A. Muradyan ◽  
E.S. Gudkova ◽  
E.D. Khilazheva ◽  
A.V. Morgun ◽  
N.A. Malinovskaya ◽  
...  

The dose-dependent effects of plasma exposure to a unipolar nanosecond sliding discharge over the surface of the culture medium in a closed plate on the cells of cerebral endothelium in vitro were studied. Using a 24-well plate, the surface plasma energy density of one pulse was 360 μJ/cm2 at a pulse frequency of 100 Hz. It has been shown that in the creeping discharge plasma there is an active excitation of air molecules, the formation of positive nitrogen and oxygen ions, and the formation of carbon monoxide. In the dose density range of 0-32 J/cm2, the dose-dependent effects were assessed in the 4-12 h post-radiation period. Cell death was analyzed with an assessment of the total number of cells, necrotic cells, cells in apoptosis (phosphatidylserine externalization, internucleosomal DNA fragmentation) and their proliferative activity (Ki67-immunopositive cells). A preliminary assessment of subtle dose-dependent effects indicates the peculiarities of the effect of small doses


Author(s):  
Jaclyn Iannucci ◽  
Haripriya Vittal Rao ◽  
Paula Grammas

Abstract Diabetes is strongly linked to the development of Alzheimer’s disease (AD), though the mechanisms for this enhanced risk are unclear. Because vascular inflammation is a consistent feature of both diabetes and AD, the cerebral microcirculation could be a key target for the effects of diabetes in the brain. The goal of this study is to explore whether brain endothelial cells, injured by diabetes-related insults, glucose and hypoxia, can affect inflammatory and activation processes in microglia in vitro. Human brain microvascular endothelial cells (HBMVECs) were either treated with 5 mM glucose (control), 30 mM glucose (high glucose), exposed to hypoxia, or exposed to hypoxia plus high glucose. HBMVEC-conditioned medium was then used to treat BV-2 microglia. Alterations in microglia phenotype were assessed through measurement of nitric oxide (NO), cytokine production, microglial activation state markers, and microglial phagocytosis. HBMVECs were injured by exposure to glucose and/or hypoxia, as assessed by release of LDH, interleukin (IL)-1β, and reactive oxygen species (ROS). HBMVECs injured by glucose and hypoxia induced increases in microglial production of NO, tumor necrosis factor-α (TNFα) and matrix metalloproteinase (MMP)-9. Injured HBMVECs significantly increased microglial expression of CD11c and CLEC7A, and decreased expression of the homeostatic marker P2RY12. Finally, bead uptake by BV-2 cells, an index of phagocytic ability, was elevated by conditioned media from injured HBMVECs. The demonstration that injury to brain endothelial cells by diabetic-associated insults, glucose and hypoxia, promotes microglial inflammation supports the idea that the cerebral microcirculation is a critical locus for the deleterious effects of diabetes in the AD brain.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Wendy Jent ◽  
Emily N. Burrage ◽  
Christian Price ◽  
Tyler Colbentz ◽  
Ryan Childers ◽  
...  

2019 ◽  
Vol 38 (5) ◽  
pp. 385-394 ◽  
Author(s):  
Qiang Gu ◽  
Elvis Cuevas ◽  
Syed F. Ali ◽  
Merle G. Paule ◽  
Victor Krauthamer ◽  
...  

Conventional in vitro assays are often used as initial screens to identify potential toxic effects of nanoparticles (NPs). However, many NPs have shown interference with conventional in vitro assays, resulting in either false-positive or -negative outcomes. Here, we report an alternative method for the in vitro assessment of NP-induced cytotoxicity utilizing Fluoro-Jade C (FJ-C). To provide proof of concept and initial validation data, Ag-NPs and Au-NPs were tested in 3 different cell cultures including rat brain microvessel endothelial cells, mouse neural stem cells, and the human SH-SY5Y cell line. Conventional 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and lactate dehydrogenase (LDH) assays were run in parallel with the new method and served as references. The results demonstrate for the first time that FJ-C labeling can be a useful tool for assessing NP-induced cytotoxicity in vitro. Using these approaches, it was also demonstrated that removal of Ag-NPs—while keeping the Ag-ions that were released from the Ag-NPs in culture media—abolished the measured cytotoxicity, indicating that Ag-NPs rather than Ag-ions in solution contributed to the observed cytotoxic effects. Further, co-treatment of Ag-NPs with N-acetyl cysteine (NAC) prevented the observed cytotoxicity, suggesting a protective role of NAC in Ag-NP-induced cytotoxicity. Thus, this alternative in vitro assay is well suited for identify potential cytotoxicity associated with exposure to NPs.


Sign in / Sign up

Export Citation Format

Share Document