scholarly journals Heat Shock Protein 70 Is Associated with Replicase Complex of Japanese Encephalitis Virus and Positively Regulates Viral Genome Replication

PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e75188 ◽  
Author(s):  
Jing Ye ◽  
Zheng Chen ◽  
Bo Zhang ◽  
Huan Miao ◽  
Ali Zohaib ◽  
...  
2012 ◽  
Vol 93 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Yong-Zhe Zhu ◽  
Ming-Mei Cao ◽  
Wen-Bo Wang ◽  
Wen Wang ◽  
Hao Ren ◽  
...  

Japanese encephalitis virus (JEV) is an enveloped flavivirus and the most common agent of viral encephalitis. It enters cells through receptor-mediated endocytosis and low pH-triggered membrane fusion. Although lipid rafts, cholesterol-enriched lipid-ordered membrane domains, have been shown to participate in JEV entry, the mechanisms of the early events of JEV infection, including the cellular receptors of JEV, remain largely unknown. In the current study, it was demonstrated that heat-shock protein 70 (HSP70), rather than other members of the HSP70 family, was required for JEV entry into a human cell line. Cell-surface expression of HSP70 and a direct interaction between JEV envelope (E) protein and HSP70 were observed. Biochemical fractionation showed that HSP70 clearly migrated into the raft fraction after virus infection and co-fractioned with E protein. Depletion of cholesterol shifted the E protein and HSP70 to a non-raft membrane and decreased JEV entry without affecting virus binding to host cells. Notably, recruitment of HSP70 into lipid rafts was required for activation of the phosphoinositide 3-kinase/Akt signalling pathway in the early stage of JEV infection. These results indicate that lipid rafts facilitate JEV entry, possibly by providing a convenient platform to concentrate JEV and its receptors on the host-cell membrane.


Virology ◽  
2009 ◽  
Vol 385 (1) ◽  
pp. 47-57 ◽  
Author(s):  
Soma Das ◽  
Suhas Venkataramana Laxminarayana ◽  
Nagasuma Chandra ◽  
Vasanthapuram Ravi ◽  
Anita Desai

Viruses ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 559 ◽  
Author(s):  
Xiaofang Cui ◽  
Ping Qian ◽  
Tingting Rao ◽  
Yanming Wei ◽  
Fang Zhao ◽  
...  

Japanese encephalitis virus (JEV) is a zoonotic mosquito-borne flavivirus which is the leading causative agent of viral encephalitis in endemic regions. JEV NS3 is a component of the viral replicase complex and is a multifunctional protein. In this study, interleukin enhancer-binding factor 2 (ILF2) is identified as a novel cellular protein interacting with NS3 through co-immunoprecipitation assay and LC-MS/MS. The expression of ILF2 is decreased in JEV-infected human embryonic kidney (293T) cells. The knockdown of endogenous ILF2 by special short hairpin RNA (shRNA) positively regulates JEV propagation, whereas the overexpression of ILF2 results in a significantly reduced JEV genome synthesis. Further analysis revealed that the knockdown of ILF2 positively regulates viral replication by JEV replicon system studies. These results suggest that ILF2 may act as a potential antiviral agent against JEV infection.


2021 ◽  
Vol 22 (8) ◽  
pp. 4218
Author(s):  
Chih-Wei Huang ◽  
Kuen-Nan Tsai ◽  
Yi-Shiuan Chen ◽  
Ruey-Yi Chang

MicroRNAs (miRNAs) play versatile roles in multiple biological processes. However, little is known about miRNA’s involvement in flavivirus persistent infection. Here, we used an miRNA array analysis of Japanese encephalitis virus (JEV)-infected cells to search for persistent infection-associated miRNAs in comparison to acute infection. Among all differentially expressed miRNAs, the miR-125b-5p is the most significantly increased one. The high level of miR-125b-5p in persistently JEV-infected cells was confirmed by Northern analysis and real-time quantitative polymerase chain reaction. As soon as the cells established a persistent infection, a significantly high expression of miR-125b-5p was readily observed. Transfecting excess quantities of a miR-125b-5p mimic into acutely infected cells reduced genome replication and virus titers. Host targets of miR125b-5p were analyzed by target prediction algorithms, and six candidates were confirmed by a dual-luciferase reporter assay. These genes were upregulated in the acutely infected cells and sharply declined in the persistently infected cells. The transfection of the miR125b-5p mimic reduced the expression levels of Stat3, Map2k7, and Triap1. Our studies indicated that miR-125b-5p targets both viral and host sequences, suggesting its role in coordinating viral replication and host antiviral responses. This is the first report to characterize the potential roles of miR-125b-5p in persistent JEV infections.


2004 ◽  
Vol 78 (10) ◽  
pp. 5133-5138 ◽  
Author(s):  
Kuo-Chih Lin ◽  
Huei-Lan Chang ◽  
Ruey-Yi Chang

ABSTRACT Japanese encephalitis virus (JEV) contains a single positive-strand RNA genome nearly 11 kb in length and is not formally thought to generate subgenomic RNA molecules during replication. Here, we report the abundant accumulation of a 3′-terminal 521- to 523-nucleotide (nt) genome fragment, representing a major portion of the 585-nt 3′ untranslated region, in both mammalian (BHK-21) and mosquito (C6/36) cells infected with any of nine strains of JEV. In BHK-21 cells, the viral genome was detected as early as 24 h postinfection, the small RNA was detected as early as 28 h postinfection, and the small RNA was 0.25 to 1.5 times as abundant as the genome on a molar basis between 28 and 48 h postinfection. In C6/36 cells, the genome and small RNA were present 5 days postinfection and the small RNA was 1.25 to 5.14 times as abundant as the genome. The 3′-terminal 523-nt small RNA contains a 5′-proximal stable hairpin (nt 6 to 56) that may play a role in its formation and the conserved flavivirus 3′-cyclization motif (nt 413 to 420) and the 3′-terminal long stable hairpin structure (nt 440 to 523) that have postulated roles in genome replication. Abundant accumulation of the small RNA during viral replication in both mammalian and mosquito cells suggests that it may play a biological role, perhaps as a regulator of RNA synthesis.


2009 ◽  
Vol 83 (7) ◽  
pp. 3276-3287 ◽  
Author(s):  
Robert Yung-Liang Wang ◽  
Jozsef Stork ◽  
Peter D. Nagy

ABSTRACT Plus-stranded RNA viruses coopt host proteins to promote their robust replication in infected hosts. Tomato bushy stunt tombusvirus (TBSV) is a model virus that can replicate a small replicon RNA in Saccharomyces cerevisiae and in plants. The tombusvirus replicase complex contains heat shock protein 70 (Hsp70), an abundant cytosolic chaperone, which is required for TBSV replication. To dissect the function of Hsp70 in TBSV replication, in this paper we use an Hsp70 mutant (ssa1 ssa2) yeast strain that supports a low level of TBSV replication. Using confocal laser microscopy and cellular fractionation experiments, we find that the localization of the viral replication proteins changes to the cytosol in the mutant cells from the peroxisomal membranes in wild-type cells. An in vitro membrane insertion assay shows that Hsp70 promotes the integration of the viral replication proteins into subcellular membranes. This step seems to be critical for the assembly of the viral replicase complex. Using a gene-silencing approach and quercetin as a chemical inhibitor to downregulate Hsp70 levels, we also confirm the significance of cytosolic Hsp70 in the replication of TBSV and other plant viruses in a plant host. Taken together, our results suggest that cytosolic Hsp70 plays multiple roles in TBSV replication, such as affecting the subcellular localization and membrane insertion of the viral replication proteins as well as the assembly of the viral replicase.


Sign in / Sign up

Export Citation Format

Share Document