scholarly journals Rapid Sanger Sequencing of the 16S rRNA Gene for Identification of Some Common Pathogens

PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e88886 ◽  
Author(s):  
Linxiang Chen ◽  
Ying Cai ◽  
Guangbiao Zhou ◽  
Xiaojun Shi ◽  
Jianhui Su ◽  
...  
2018 ◽  
Author(s):  
John S Lambert ◽  
Michael John Cook ◽  
John Eoin Healy ◽  
Ross Murtagh ◽  
Gordana Avramovic ◽  
...  

Lyme borreliosis is a systemic infection caused by tick-borne pathogenic borreliae of the Borrelia burgdorferi sensu lato complex or of the more heterogeneous relapsing fever borrelia group. Clinical distinction of the infections due to different borrelia species is difficult. Accurate knowledge of the prevalence and the species of borreliae in the infected ticks in the endemic areas is valuable for formulating appropriate guidelines for proper management of this infectious disease. The purpose of this research was to design a readily implementable protocol to detect the divergent species of borreliae known to exist in Europe, using Irish samples of Ixodes ricinus ticks as the subject for study. Questing I. ricinus nymph samples were taken at six localities within Ireland. The crude DNA of each dried tick was extracted by hot NH4OH and used to initiate a same-nested PCR with a pair of borrelial genus-specific primers to amplify a highly conserved 357/358 bp segment of the 16S rRNA gene for detection and as the template for Sanger sequencing. To distinguish B. garinii from B. burgdorferi and to discriminate the various strains of B. garinii, a second 282 bp segment of the 16S rRNA gene was amplified for Sanger sequencing. A signature segment of the DNA sequence excised from the computer-generated electropherogram was submitted to the GenBank for BLAST alignment analysis. A 100% ID match with the unique reference sequence in the GenBank was required for the molecular diagnosis of the borrelial species or strain. We found the overall rate of borrelial infection in the Irish tick population to be 5%, with a range from 2% to 12% depending on the locations of tick collection. At least 3 species, namely B. garinii, B. valaisiana and B. miyamotoi, are infecting the ticks collected in Ireland. The isolates of B. garinii were confirmed to be strain BgVir, strain Bernie or strain T25. Since antigens for diagnostic serology tests may be species- or even strain-specific, expanded surveillance of the species and strains of the borreliae among human-biting ticks in Ireland is needed to ensure that the antigens used for the serology tests do contain the epitopes matching the antibodies elicited by the borrelial species and strains in the ticks cohabitating in the same environment.


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 781-786 ◽  
Author(s):  
Maximo Sánchez ◽  
Martha-Helena Ramírez-Bahena ◽  
Alvaro Peix ◽  
María J. Lorite ◽  
Juan Sanjuán ◽  
...  

Strain S658T was isolated from a Lotus corniculatus nodule in a soil sample obtained in Uruguay. Phylogenetic analysis of the 16S rRNA gene and atpD gene showed that this strain clustered within the genus Phyllobacterium . The closest related species was, in both cases, Phyllobacterium trifolii PETP02T with 99.8 % sequence similarity in the 16S rRNA gene and 96.1 % in the atpD gene. The 16S rRNA gene contains an insert at the beginning of the sequence that has no similarities with other inserts present in the same gene in described rhizobial species. Ubiquinone Q-10 was the only quinone detected. Strain S658T differed from its closest relatives through its growth in diverse culture conditions and in the assimilation of several carbon sources. It was not able to reproduce nodules in Lotus corniculatus. The results of DNA–DNA hybridization, phenotypic tests and fatty acid analyses confirmed that this strain should be classified as a representative of a novel species of the genus Phyllobacterium , for which the name Phyllobacterium loti sp. nov. is proposed. The type strain is S658T( = LMG 27289T = CECT 8230T).


2011 ◽  
Vol 225 (1) ◽  
pp. 65-69 ◽  
Author(s):  
Toshinori Kawanami ◽  
Kazuhiro Yatera ◽  
Kazumasa Fukuda ◽  
Kei Yamasaki ◽  
Masamizu Kunimoto ◽  
...  

2014 ◽  
Vol 81 (1) ◽  
pp. 48-58 ◽  
Author(s):  
Brandee L. Stone ◽  
Nathan M. Russart ◽  
Robert A. Gaultney ◽  
Angela M. Floden ◽  
Jefferson A. Vaughan ◽  
...  

ABSTRACTScant attention has been paid to Lyme disease,Borrelia burgdorferi,Ixodes scapularis, or reservoirs in eastern North Dakota despite the fact that it borders high-risk counties in Minnesota. Recent reports ofB. burgdorferiandI. scapularisin North Dakota, however, prompted a more detailed examination. Spirochetes cultured from the hearts of five rodents trapped in Grand Forks County, ND, were identified asB. burgdorferi sensu latothrough sequence analyses of the 16S rRNA gene, the 16S rRNA gene-ileTintergenic spacer region,flaB,ospA,ospC, andp66. OspC typing revealed the presence of groups A, B, E, F, L, and I. Two rodents were concurrently carrying multiple OspC types. Multilocus sequence typing suggested the eastern North Dakota strains are most closely related to those found in neighboring regions of the upper Midwest and Canada. BALB/c mice were infected withB. burgdorferiisolate M3 (OspC group B) by needle inoculation or tick bite. Tibiotarsal joints and ear pinnae were culture positive, andB. burgdorferiM3 was detected by quantitative PCR (qPCR) in the tibiotarsal joints, hearts, and ear pinnae of infected mice. Uninfected larvalI. scapularisticks were able to acquireB. burgdorferiM3 from infected mice; M3 was maintained inI. scapularisduring the molt from larva to nymph; and further, M3 was transmitted from infectedI. scapularisnymphs to naive mice, as evidenced by cultures and qPCR analyses. These results demonstrate that isolate M3 is capable of disseminated infection by both artificial and natural routes of infection. This study confirms the presence of unique (nonclonal) and infectiousB. burgdorferipopulations in eastern North Dakota.


Sign in / Sign up

Export Citation Format

Share Document