bacterial community dynamics
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 82)

H-INDEX

42
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Neža Orel ◽  
Eduard Fadeev ◽  
Katja Klun ◽  
Matjaž Ličer ◽  
Tinkara Tinta ◽  
...  

Coastal zones are exposed to various anthropogenic impacts, such as different types of wastewater pollution, e.g., treated wastewater discharges, leakage from sewage systems, and agricultural and urban runoff. These various inputs can introduce allochthonous organic matter and microbes, including pathogens, into the coastal marine environment. The presence of fecal bacterial indicators in the coastal environment is usually monitored using traditional culture-based methods that, however, fail to detect their uncultured representatives. We have conducted a year-around in situ survey of the pelagic microbiome of the dynamic coastal ecosystem, subjected to different anthropogenic pressures to depict the seasonal and spatial dynamics of traditional and alternative fecal bacterial indicators. To provide an insight into the environmental conditions under which bacterial indicators thrive, a suite of environmental factors and bacterial community dynamics were analyzed concurrently. Analyses of 16S rRNA amplicon sequences revealed that the coastal microbiome was primarily structured by seasonal changes regardless of the distance from the wastewater pollution sources. On the other hand, fecal bacterial indicators were not affected by seasons and accounted for up to 34% of the sequence proportion for a given sample. Even more so, traditional fecal indicator bacteria (Enterobacteriaceae) and alternative wastewater-associated bacteria (Lachnospiraceae, Ruminococcaceae, Arcobacteraceae, Pseudomonadaceae and Vibrionaceae) were part of the core coastal microbiome, i.e., present at all sampling stations. Microbial source tracking and Lagrangian particle tracking, which we employed to assess the potential pollution source, revealed the importance of riverine water as a vector for transmission of allochthonous microbes into the marine system. Further phylogenetic analysis showed that the Arcobacteraceae in our data set was affiliated with the pathogenic Arcobacter cryaerophilus, suggesting that a potential exposure risk for bacterial pathogens in anthropogenically impacted coastal zones remains. We emphasize that molecular analyses combined with statistical and oceanographic models may provide new insights for environmental health assessment and reveal the potential source and presence of microbial indicators, which are otherwise overlooked by a cultivation approach.


2021 ◽  
Vol 204 (1) ◽  
Author(s):  
Md Majharul Islam ◽  
Rajarshi Bhattacharya ◽  
Biraj Sarkar ◽  
Pulak Kumar Maiti ◽  
Shouvik Mahanty ◽  
...  

2021 ◽  
Author(s):  
Dominik Merges ◽  
Alexandra Schmidt ◽  
Imke Schmitt ◽  
Eike Lena Neuschulz ◽  
Francesco Dal Grande ◽  
...  

Soil microbial diversity affects ecosystem functioning and global biogeochemical cycles. Soil bacterial communities catalyze a diversity of biogeochemical reactions and have thus sparked considerable scientific interest. One driver of bacterial community dynamics in natural ecosystems has so far been largely neglected: the predator-prey interactions between bacterial viruses (bacteriophages) and bacteria. To generate ground level knowledge on environmental drivers of these particular predator-prey dynamics we propose an activity-based ecological framework to simultaneous capture community dynamics of bacteria and bacteriophages in soils. An ecological framework and specifically the analyses of community dynamics across latitudinal and altitudinal gradients have been widely used in ecology to understand community-wide responses of innumerable taxa to environmental change, in particular to climate. Here, we tested the hypothesis that the activity of bacteria and bacteriophages co-decline across an elevational gradient. We used metatranscriptomics to investigate bacterial and bacteriophage activity patterns at 5 sites across 400 elevational meters in the Swiss Alps in 2015 and 2017. We found that metabolic activity (transcription levels) of bacteria declined significantly with increasing elevation, but activity of bacteriophages did not. We showed that bacteriophages are consistently active in soil along the entire gradient. Bacteriophage activity pattern, however, is divergent from that of their putative bacterial prey. Future efforts will be necessary to link the environment-activity relationship to predator-prey dynamics, to understand the magnitude of viral contributions to mobilize bacterial cell carbon when infection causes bacterial cell death, a process that may represent an overlooked component of soil biogeochemical cycles.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Chunfang Zhang ◽  
Shuo Jiao ◽  
Duntao Shu ◽  
Gehong Wei

AbstractUnderstanding interspecies interactions is essential to predict the response of microbial communities to exogenous perturbation. Herein, rhizospheric and bulk soils were collected from five developmental stages of soybean, which grew in soils receiving 16-year nitrogen inputs. Bacterial communities and functional profiles were examined using high-throughput sequencing and quantitative PCR, respectively. The objective of this study was to identify the key bacterial interactions that influenced community dynamics and functions. We found that the stages of soybean development outcompeted nitrogen fertilization management in shaping bacterial community structure, while fertilization treatments significantly shaped the abundance distribution of nitrogen functional genes. Temporal variations in bacterial abundances increased in bulk soils, especially at the stage of soybean branching, which helps to infer underlying negative interspecies interactions. Members of Cyanobacteria and Actinobacteria actively engaged in inter-phylum negative interactions in bulk soils and soybean rhizosphere, respectively. Furthermore, the negative interactions between nitrogen-fixing functional groups and the reduction of nifH gene abundance were coupled during soybean development, which may help to explain the linkages between population dynamics and functions. Overall, these findings highlight the importance of inter-phylum negative interactions in shaping the correlation patterns of bacterial communities and in determining soil functional potential.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Katelyn Mika ◽  
Alexander S. Okamoto ◽  
Neil H. Shubin ◽  
David B. Mark Welch

Abstract Background Microbial transmission from parent to offspring is hypothesized to be widespread in vertebrates. However, evidence for this is limited as many evolutionarily important clades remain unexamined. There is currently no data on the microbiota associated with any Chondrichthyan species during embryonic development, despite the global distribution, ecological importance, and phylogenetic position of this clade. In this study, we take the first steps towards filling this gap by investigating the microbiota associated with embryonic development in the little skate, Leucoraja erinacea, a common North Atlantic species and popular system for chondrichthyan biology. Methods To assess the potential for bacterial transmission in an oviparous chondrichthyan, we used 16S rRNA amplicon sequencing to characterize the microbial communities associated with the skin, gill, and egg capsule of the little skate, at six points during ontogeny. Community composition was analyzed using the QIIME2 pipeline and microbial continuity between stages was tracked using FEAST. Results We identify site-specific and stage-specific microbiota dominated by the bacterial phyla Proteobacteria and Bacteroidetes. This composition is similar to, but distinct from, that of previously published data on the adult microbiota of other chondrichthyan species. Our data reveal that the skate egg capsule harbors a highly diverse bacterial community–particularly on the internal surface of the capsule–and facilitates intergenerational microbial transfer to the offspring. Embryonic skin and external gill tissues host similar bacterial communities; the skin and gill communities later diverge as the internal gills and skin denticles develop. Conclusions Our study is the first exploration of the chondrichthyan microbiota throughout ontogeny and provides the first evidence of vertical transmission in this group.


2021 ◽  
Author(s):  
Andrei Bombin ◽  
Jonathan D. Mosley ◽  
Shun Yan ◽  
Sergei Bombin ◽  
Jane F. Ferguson

Obesity is an increasing global health concern and is associated with a broad range of morbidities. The gut microbiota are increasingly recognized as important contributors to obesity and cardiometabolic health. This study aimed to characterize oral and gut microbial communities, and evaluate host:microbiota interactions between clinical obesity classifications. We performed 16S rDNA sequencing on fecal and salivary samples, global metabolomics profiling on plasma and stool samples, and dietary profiling in 135 healthy individuals. We grouped individuals by obesity status, based on body mass index (BMI), including lean (BMI 18-24.9), overweight (BMI 25-29.9), or obese (BMI ≥30). We analyzed differences in microbiome composition, community inter-relationships, and predicted microbial function by obesity status. We found that salivary bacterial communities of lean and obese individuals were compositionally and phylogenetically distinct. An increase in obesity status was positively associated with strong correlations between bacterial taxa, particularly with bacterial groups implicated in metabolic disorders including Fretibacterium, and Tannerella. Consumption of sweeteners, especially xylitol, significantly influenced compositional and phylogenetic diversities of salivary and fecal bacterial communities. In addition, obesity groups exhibited differences in predicted bacterial metabolic activity, which was correlated with host's metabolite concentrations. Overall, obesity was associated with distinct changes in bacterial community dynamics, particularly in saliva. Consideration of microbiome community structure, and inclusion of salivary samples may improve our ability to understand pathways linking microbiota to obesity and cardiometabolic disease.


Sign in / Sign up

Export Citation Format

Share Document