scholarly journals Identification of Resveratrol Oligomers as Inhibitors of Cystic Fibrosis Transmembrane Conductance Regulator by High-Throughput Screening of Natural Products from Chinese Medicinal Plants

PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e94302 ◽  
Author(s):  
Yaofang Zhang ◽  
Bo Yu ◽  
Yujie Sui ◽  
Xin Gao ◽  
Hong Yang ◽  
...  
2017 ◽  
Vol 22 (3) ◽  
pp. 315-324 ◽  
Author(s):  
Feng Liang ◽  
Haibo Shang ◽  
Nikole J. Jordan ◽  
Eric Wong ◽  
Dayna Mercadante ◽  
...  

Cystic fibrosis (CF) is a hereditary disease caused by mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). A large number of nearly 2000 reported mutations, including the premature termination codon (PTC) mutations, urgently require new and personalized medicines. We have developed cell-based assays for readthrough modulators of CFTR PTC mutations (or nonsense mutation suppressors), based on the trafficking and surface expression of CFTR. Approximately 85,000 compounds have been screened for two PTC mutations (Y122X and W1282X). The hit rates at the threshold of 50% greater than vehicle response are 2% and 1.4% for CFTR Y122X and CFTR W1282X, respectively. The overlap of the two hit sets at this stringent hit threshold is relatively small. Only ~28% of the hits from the W1282X screen were also hits in the Y122X screen. The overlap increases to ~50% if compounds are included that in the second screen achieve only a less stringent hit criterion, that is, horseradish peroxidase (HRP) activity greater than three standard deviations above the mean of the vehicle. Our data suggest that personalization may not need to address individual genotypes, but that patients with different CFTR PTC mutations could benefit from the same medicines.


Sign in / Sign up

Export Citation Format

Share Document