scholarly journals Biomechanics of the Cornea Evaluated by Spectral Analysis of Waveforms from Ocular Response Analyzer and Corvis-ST

PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e97591 ◽  
Author(s):  
Sushma Tejwani ◽  
Rohit Shetty ◽  
Mathew Kurien ◽  
Shoruba Dinakaran ◽  
Arkasubhra Ghosh ◽  
...  
Eye ◽  
2022 ◽  
Author(s):  
Ramin Salouti ◽  
Reza Razeghinejad ◽  
Gholamreza Eslami ◽  
Mousa Zare ◽  
Kia Salouti ◽  
...  

2019 ◽  
Vol 30 (6) ◽  
pp. 1432-1439 ◽  
Author(s):  
Lisa Ramm ◽  
Robert Herber ◽  
Eberhard Spoerl ◽  
Lutz E Pillunat ◽  
Naim Terai

Purpose: To investigate the impact of diabetes mellitus–induced changes on intraocular pressure measurements using Goldmann applanation tonometry, Ocular Response Analyzer, and Corvis ST. Methods: Measurements were done using Goldmann applanation tonometry, Ocular Response Analyzer, and Corvis ST in 69 diabetic patients. Biomechanical-corrected intraocular pressure values by Ocular Response Analyzer (IOPcc) and Corvis ST (bIOP) were used. In addition, biometry and tomography were performed and information on diabetes mellitus specific factors was collected. Results were compared to an age-matched group of 68 healthy subjects. Results: In diabetes mellitus, Goldmann applanation tonometry intraocular pressure (P = 0.193) and central corneal thickness (P = 0.184) were slightly increased. Also, IOPcc (P = 0.075) and bIOP (P = 0.542) showed no significant group difference. In both groups, IOPcc was higher than Goldmann applanation tonometry intraocular pressure (P = 0.002, P < 0.001), while bIOP was nearly equal to Goldmann applanation tonometry intraocular pressure (P = 0.795, P = 0.323). Central corneal thickness showed a tendency to higher values in poorly controlled than in controlled diabetes mellitus (P = 0.059). Goldmann applanation tonometry intraocular pressure correlated to central corneal thickness, while IOPcc and bIOP were independent from central corneal thickness in both groups. All intraocular pressure values showed significant associations to corneal biomechanical parameters. Only in diabetes mellitus, bIOP was correlated to Pachy slope (P = 0.023). Conclusion: In diabetes mellitus, Goldmann applanation tonometry intraocular pressure was slightly, but not significantly, increased, which might be caused by a higher central corneal thickness and changes in corneal biomechanical properties. However, intraocular pressure values measured by Ocular Response Analyzer and Corvis ST were not significantly different between diabetes mellitus patients and healthy subjects. The bIOP showed a higher agreement with Goldmann applanation tonometry than IOPcc and was independent from central corneal thickness.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Lisa Ramm ◽  
Robert Herber ◽  
Eberhard Spoerl ◽  
Frederik Raiskup ◽  
Lutz E. Pillunat ◽  
...  

Purpose. To compare intraocular pressure (IOP) measurements with Goldmann applanation tonometry (GAT), ocular response analyzer (ORA), dynamic contour tonometer (DCT), and Corvis ST (CST) in healthy subjects. Methods. In a prospective, observational study, IOP measurements with GAT (GAT-IOPc), ORA (IOPcc), DCT (DCT-IOP), and CST (bIOP) were performed and analyzed in 94 healthy subjects. Results. Mean age of the participants was 45.6 ± 17.2 years (range 18 to 81 years). Mean GAT-IOPc was 12.9 ± 2.4 mmHg, mean DCT-IOP was 16.1 ± 2.6 mmHg, and mean IOPcc was 15.6 ± 3.3 mmHg. DCT-IOP and IOPcc were significantly higher than GAT-IOPc (P<0.001). Mean bIOP was 13.5 ± 2.4 mmHg that was slightly higher but not significantly different from GAT-IOPc (P=0.146). Correlation analysis of IOP values and central corneal thickness (CCT) revealed a negative correlation between GAT-IOPc and CCT (r = −0.347; P=0.001). However, IOPcc, DCT-IOP, and bIOP showed no significant correlation to CCT. Only bIOP revealed a weak but significant age dependency (r = 0.321, P=0.002). Conclusion. All tonometry devices showed a good agreement of biomechanical corrected IOP values with GAT-IOPc. As no influence of CCT on IOPcc, DCT-IOP, and bIOP was detectable, the used correction algorithms appear to be appropriate in these tonometers in the clinical setting. The highest agreement was found between GAT-IOPc and bIOP. However, bIOP weakly correlated with participants’ age. Further studies are needed to elucidate the role of bIOP for IOP measurement.


2019 ◽  
Author(s):  
Dan Fu ◽  
Meiyan Li ◽  
Michael C. Knorz ◽  
Shengsheng Wei ◽  
Jianmin Shang ◽  
...  

Abstract Background: To compare intraocular pressure (IOP) measurements by a dynamic Scheimpflug analyzer (Corvis ST), a non-contact tonometer, and the ocular response analyzer following hyperopic small-incision lenticule extraction (SMILE).Methods: Thirteen patients underwent hyperopic SMILE in one eye each were prospectively enrolled. IOP and corneal biomechanical parameters were measured preoperatively and 1 week, 1 month, and 3 months after surgery with a non-contact tonometer (IOPNCT), Corvis ST (biomechanical corrected IOP, bIOP), and the ocular response analyzer (Goldmann-correlated intraocular pressure [IOPg], cornea compensated IOP [IOPcc]). A linear mixed model was used to compare IOP and biomechanical values among the methods at each time point.Results: IOPNCT, IOPg, and IOPcc dropped significantly after surgery, with the amplitude being 3.15±0.48 mmHg, 5.49±0.94 mmHg, and 4.34±0.97 mmHg, respectively, at the last visit. IOPNCT decreased by 0.11±0.06 mmHg per µm of removed central corneal thickness. bIOP did not change significantly after surgery. Before surgery, no difference was found among the measurements (P> 0.05). After surgery, IOPNCT and bIOP were higher than IOPg and IOPcc. bIOP is independent of cornea thickness at the last visit, while correlated significantly with corneal biomechanics as other three IOP values did.Conclusion: bIOP (biomechanical corrected IOP as measured with the Corvis ST) seems to be an accurate parameter to measure IOP after hyperopic SMILE.


Cornea ◽  
2019 ◽  
Vol 38 (5) ◽  
pp. 595-599 ◽  
Author(s):  
Lisa Ramm ◽  
Robert Herber ◽  
Eberhard Spoerl ◽  
Lutz E. Pillunat ◽  
Naim Terai

Sign in / Sign up

Export Citation Format

Share Document