scholarly journals In Vivo Evaluation of a Novel Oriented Scaffold-BMSC Construct for Enhancing Full-Thickness Articular Cartilage Repair in a Rabbit Model

PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0145667 ◽  
Author(s):  
Shuaijun Jia ◽  
Ting Zhang ◽  
Zhuo Xiong ◽  
Weimin Pan ◽  
Jian Liu ◽  
...  
2017 ◽  
Vol 46 (3) ◽  
pp. 713-727 ◽  
Author(s):  
Chin-Chean Wong ◽  
Chih-Hwa Chen ◽  
Li-Hsuan Chiu ◽  
Yang-Hwei Tsuang ◽  
Meng-Yi Bai ◽  
...  

Background: Insufficient cell numbers still present a challenge for articular cartilage repair. Converting heterotopic auricular chondrocytes by extracellular matrix may be the solution. Hypothesis: Specific extracellular matrix may convert the phenotype of auricular chondrocytes toward articular cartilage for repair. Study Design: Controlled laboratory study. Methods: For in vitro study, rabbit auricular chondrocytes were cultured in monolayer for several passages until reaching status of dedifferentiation. Later, they were transferred to chondrogenic type II collagen (Col II)–coated plates for further cell conversion. Articular chondrogenic profiles, such as glycosaminoglycan deposition, articular chondrogenic gene, and protein expression, were evaluated after 14-day cultivation. Furthermore, 3-dimensional constructs were fabricated using Col II hydrogel-associated auricular chondrocytes, and their histological and biomechanical properties were analyzed. For in vivo study, focal osteochondral defects were created in the rabbit knee joints, and auricular Col II constructs were implanted for repair. Results: The auricular chondrocytes converted by a 2-step protocol expressed specific profiles of chondrogenic molecules associated with articular chondrocytes. The histological and biomechanical features of converted auricular chondrocytes became similar to those of articular chondrocytes when cultivated with Col II 3-dimensional scaffolds. In an in vivo animal model of osteochondral defects, the treated group (auricular Col II) showed better cartilage repair than did the control groups (sham, auricular cells, and Col II). Histological analyses revealed that cartilage repair was achieved in the treated groups with abundant type II collagen and glycosaminoglycans syntheses rather than elastin expression. Conclusion: The study confirmed the feasibility of applying heterotopic chondrocytes for cartilage repair via extracellular matrix–induced cell conversion. Clinical Relevance: This study proposes a feasible methodology to convert heterotopic auricular chondrocytes for articular cartilage repair, which may serve as potential alternative sources for cartilage repair.


2018 ◽  
Vol 69 (4) ◽  
pp. 894-900 ◽  
Author(s):  
Pal Fodor ◽  
Raluca Fodor ◽  
Arpad Solyom ◽  
Cornel Catoi ◽  
Flaviu Tabaran ◽  
...  

Currently, microfracturing is the most commonly used cartilage repair procedure in cartilage defects. Our aim was to study the mechanism of in vivo cartilage repair in case of full-thickness articular cartilage damage of the knee using a three-dimensional matrix implanted without any preseeded cells in the defect. We also investigated whether platelet-rich plasma application after microfracture procedure of the knee is associated with improved outcome compared with traditional microfracture treatment alone in a rabbit model. Histological examination of the chondral defects, revealed the largest amount of new tissue with hyaline-like cartilage features in Hyalofast group. At 12 weeks from implantation of the Hyalofast scaffold demonstrated complete filling of the defect with hyaline cartilage in admixture with the scaffold and bone metaplasia in the deepest areas. In the PRP group, complete filling of the defect with an admixture of fibrous and hyaline-like cartilage tissue appeared with a discreet tendency of endochondral ossification. We confirmed the superiority of the autologous matrix-induced chondrogenesis compared to microfracture and PRP or microfracture alone in case of full-thickness articular cartilage damage of the knee.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Junjun Shi ◽  
Xin Zhang ◽  
Yanbin Pi ◽  
Jingxian Zhu ◽  
Chunyan Zhou ◽  
...  

The clinical application of viral vectors for gene therapy is limited for biosafety consideration. In this study, to promote articular cartilage repair, poly (lactic-co glycolic acid) (PLGA) nanopolymers were used as non-viral vectors to transfect rabbit mesenchymal stem cells (MSCs) with the pDC316-BMP4-EGFP plasmid. The cytotoxicity and transfection efficiency in vitro were acceptable measuring by CCK-8 and flow cytometry. After transfection, Chondrogenic markers (mRNA of Col2a1, Sox9, Bmp4, and Agg) of experimental cells (MSCs being transfected with BMP-4 plasmid by PLGA nanopolymers) were increased more than those of control cells (MSCs being transfected with naked BMP-4 plasmid alone). In vivo study, twelve rabbits (24 knees) with large full thickness articular cartilage defects were randomly divided into the experimental group (MSCs being transfected with BMP-4 plasmid by PLGA nanopolymers) and the control group (MSCs being transfected with naked BMP-4 plasmid). The experimental group showed better regeneration than the control group 6 and 12 weeks postoperatively. Hyaline-like cartilage formed at week 12 in the experimental group, indicating the local delivery of BMP-4 plasmid to MSCs by PLGA nanopolymers improved articular cartilage repair significantly. PLGA nanopolymers could be a promising and effective non-viral vector for gene therapy in cartilage repair.


2018 ◽  
Vol 12 (11) ◽  
pp. 2179-2187
Author(s):  
Yoshiki Tani ◽  
Masato Sato ◽  
Munetaka Yokoyama ◽  
Miyuki Yokoyama ◽  
Takumi Takahashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document