scholarly journals Persistence of F-Specific RNA Coliphages in Surface Waters from a Produce Production Region along the Central Coast of California

PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0146623 ◽  
Author(s):  
Subbarao V. Ravva ◽  
Chester Z. Sarreal
2015 ◽  
Vol 17 (7) ◽  
pp. 1249-1256 ◽  
Author(s):  
Subbarao V. Ravva ◽  
Chester Z. Sarreal ◽  
Michael B. Cooley

F+ RNA coliphages are invaluable for predicting the sources of fecal contamination in the environment and their prevalence data may aid in preventing the spread of enteric pathogens from likely sources.


2016 ◽  
Vol 17 (1) ◽  
pp. 30-34 ◽  
Author(s):  
Andrew Pokorny ◽  
Joseph Smilanick ◽  
Chang-Lin Xiao ◽  
James J. Farrar ◽  
Anil Shrestha

Grey mold, caused by Botryis cinerea, is one of the most important diseases of strawberry in California. Management of grey mold typically relies on repeated fungicide applications. The occurrence of fungicide resistance in B. cinerea was examined in the Central Coast strawberry production region of California. In mid-May 2013, 59 samples consisting of a single diseased fruit or plant part with gray mold symptoms were collected from six different strawberry fields. Single hyphal tip cultures were then used for mycelial growth assays to compare sensitivities to four different fungicides—boscalid, fenhexamid, iprodione, and pyraclostrobin. Each isolate was tested against discriminatory doses of each of the fungicides. In addition, representative highly sensitive and highly resistant isolates were tested against a range of fungicide concentrations to determine EC50 values. Although all of the 59 isolates were sensitive to iprodione, 37%, 31%, and 29% of the isolates were resistant to pyraclostrobin, fenhexamid, and boscalid, respectively. In some instances the isolates were dual and triple-resistant to these fungicides. EC50 values were often higher than 100 mg/liter, which was the highest concentration used. Therefore, appropriate fungicide resistance management measures should be employed in strawberry growing areas of the Central Coast region of California. Accepted for publication 19 February 2016. Published 2 March 2016.


2021 ◽  
Vol 278 ◽  
pp. 111507
Author(s):  
Christopher DeMars ◽  
Ruoyu Wang ◽  
Michael L. Grieneisen ◽  
John Steggall ◽  
Minghua Zhang

2005 ◽  
Vol 135 (1) ◽  
pp. 131-141 ◽  
Author(s):  
L.H. Du Preez ◽  
P.J. Jansen van Rensburg ◽  
A.M. Jooste ◽  
J.A. Carr ◽  
J.P. Giesy ◽  
...  

1985 ◽  
Vol 6 (2) ◽  
pp. 52-58 ◽  
Author(s):  
Susan T. Bagley

AbstractThe genus Klebsiella is seemingly ubiquitous in terms of its habitat associations. Klebsiella is a common opportunistic pathogen for humans and other animals, as well as being resident or transient flora (particularly in the gastrointestinal tract). Other habitats include sewage, drinking water, soils, surface waters, industrial effluents, and vegetation. Until recently, almost all these Klebsiella have been identified as one species, ie, K. pneumoniae. However, phenotypic and genotypic studies have shown that “K. pneumoniae” actually consists of at least four species, all with distinct characteristics and habitats. General habitat associations of Klebsiella species are as follows: K. pneumoniae—humans, animals, sewage, and polluted waters and soils; K. oxytoca—frequent association with most habitats; K. terrigena— unpolluted surface waters and soils, drinking water, and vegetation; K. planticola—sewage, polluted surface waters, soils, and vegetation; and K. ozaenae/K. rhinoscleromatis—infrequently detected (primarily with humans).


Author(s):  
James S. Webber

INTRODUCTION“Acid rain” and “acid deposition” are terms no longer confined to the lexicon of atmospheric scientists and 1imnologists. Public awareness of and concern over this phenomenon, particularly as it affects acid-sensitive regions of North America, have increased dramatically in the last five years. Temperate ecosystems are suffering from decreased pH caused by acid deposition. Human health may be directly affected by respirable sulfates and by the increased solubility of toxic trace metals in acidified waters. Even man's monuments are deteriorating as airborne acids etch metal and stone features.Sulfates account for about two thirds of airborne acids with wet and dry deposition contributing equally to acids reaching surface waters or ground. The industrial Midwest is widely assumed to be the source of most sulfates reaching the acid-sensitive Northeast since S02 emitted as a byproduct of coal combustion in the Midwest dwarfs S02 emitted from all sources in the Northeast.


Sign in / Sign up

Export Citation Format

Share Document