scholarly journals An Oxalyl-CoA Dependent Pathway of Oxalate Catabolism Plays a Role in Regulating Calcium Oxalate Crystal Accumulation and Defending against Oxalate-Secreting Phytopathogens in Medicago truncatula

PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0149850 ◽  
Author(s):  
Justin Foster ◽  
Bin Luo ◽  
Paul A. Nakata
2007 ◽  
Vol 34 (4) ◽  
pp. 332 ◽  
Author(s):  
Paul A. Nakata ◽  
Michele M. McConn

Current evidence supports a single pathway of oxalate biosynthesis utilising ascorbic acid as the precursor. In this study, we begin to address the possibility that more than one pathway of oxalate biosynthesis and calcium oxalate formation occurs in Medicago truncatula Gaertn. (cv. Jemalong genotype A17). Like the wild type, developing leaves of the calcium oxalate defective (cod) 4 mutant contain prismatic crystals along the vascular strand, but this mutant also hyper-accumulates druse crystals within the mesophyll cells. A second mutant, cod5, fails to accumulate prismatic crystals along the vascular strand, but is capable of wild type druse crystal accumulation in maturing leaves. To assess whether a single pathway of oxalate biosynthesis and calcium oxalate formation occurs in M. truncatula, we generated and characterised the cod4/cod5 double mutant. Microscopic examination of the cod4/cod5 revealed that the double mutant exhibits both cod4 and cod5 mutant crystal phenotypes simultaneously, suggesting there are differences in the pathways leading to the two crystal types. Measured ascorbic acid levels and ascorbate induction studies were consistent with the acid as precursor to oxalate in druse crystal formation but not necessarily prismatic crystal formation. On the basis of these findings, we propose a working model depicting possible pathways of oxalate biosynthesis and calcium oxalate formation.


Author(s):  
H. J. Arnott ◽  
M. A. Webb ◽  
L. E. Lopez

Many papers have been published on the structure of calcium oxalate crystals in plants, however, few deal with the early development of crystals. Large numbers of idioblastic calcium oxalate crystal cells are found in the leaves of Vitis mustangensis, V. labrusca and V. vulpina. A crystal idioblast, or raphide cell, will produce 150-300 needle-like calcium oxalate crystals within a central vacuole. Each raphide crystal is autonomous, having been produced in a separate membrane-defined crystal chamber; the idioblast''s crystal complement is collectively embedded in a water soluble glycoprotein matrix which fills the vacuole. The crystals are twins, each having a pointed and a bidentate end (Fig 1); when mature they are about 0.5-1.2 μn in diameter and 30-70 μm in length. Crystal bundles, i.e., crystals and their matrix, can be isolated from leaves using 100% ETOH. If the bundles are treated with H2O the matrix surrounding the crystals rapidly disperses.


Sign in / Sign up

Export Citation Format

Share Document