scholarly journals Predicting Ligand Binding Sites on Protein Surfaces by 3-Dimensional Probability Density Distributions of Interacting Atoms

PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0160315 ◽  
Author(s):  
Jhih-Wei Jian ◽  
Pavadai Elumalai ◽  
Thejkiran Pitti ◽  
Chih Yuan Wu ◽  
Keng-Chang Tsai ◽  
...  
2009 ◽  
Vol 07 (06) ◽  
pp. 931-938 ◽  
Author(s):  
GÁBOR IVÁN ◽  
ZOLTÁN SZABADKA ◽  
VINCE GROLMUSZ

By screening all the ligand binding sites in the Protein Data Bank, we have found that while it is geometrically possible that a loop, formed from a protein chain with residues ZYX, would "impersonate" another chain-loop with residues XYZ by a simple twisting of either the loop or the bound ligand, it almost never happens. This fact is rather surprising, and implies a notable asymmetry, since (i) loops in the folded proteins sometimes can be flexible enough to be twisted, but (ii) ligands are almost always extremely mobile before binding to the protein, therefore they can turn around and bind to residue-sequence ZYX as well. Data availability: The supplementary Table 3 lists the appearances of the residue-sequences and their inverses in the binding sites of the whole PDB, and is available at .


2015 ◽  
Vol 471 (3) ◽  
pp. 403-414 ◽  
Author(s):  
M. Florencia Rey-Burusco ◽  
Marina Ibáñez-Shimabukuro ◽  
Mads Gabrielsen ◽  
Gisela R. Franchini ◽  
Andrew J. Roe ◽  
...  

Necator americanus fatty acid and retinol-binding protein-1 (Na-FAR-1) is an abundantly expressed FAR from a parasitic hookworm. The present work describes its tissue distribution, structure and ligand-binding characteristics and shows that Na-FAR-1 expands to transport multiple FA molecules in its internal cavity.


1986 ◽  
Vol 6 (4) ◽  
pp. 463-470 ◽  
Author(s):  
Rajesh N. Kalaria ◽  
Sami I. Harik

We studied, by ligand binding methods, the two adenosine receptors, A, and A2, in rat and pig cerebral microvessels and pig choroid plexus. Ligand binding to cerebral microvessels was compared with that to membranes of the cerebral cortex. [3H]Cyclohexyladenosine and [3H]l-phenylisopropyladenosine were the ligands used for A1-receptors, and [3H]5'- N-ethylcarboxamide adenosine ([3H]NECA) was used to assess A2-receptors. We report that cerebral microvessels and choroid plexus exhibit specific [3H]NECA binding, but have no appreciable A1-receptor ligand binding sites. Specific binding of [3H]NECA to cerebral microvessels, choroid plexus, and cerebral cortex was saturable and suggested the existence of two classes of A2-receptor sites: high-affinity ( Kd ∼ 250 n M) and low-affinity ( Kd ∼ 1–2 μ M) sites. The Kd and Bmax of NECA binding to cerebral microvessels and cerebral cortex were similar within each species. Our results, indicating the existence of A2-receptors in cerebral microvessels, are consistent with results of increased adenylate cyclase activity by adenosine and some of its analogues in these microvessels.


Sign in / Sign up

Export Citation Format

Share Document