scholarly journals Zooming in: From spatially extended traveling waves to localized structures: The case of the Sine-Gordon equation in (1+3) dimensions

PLoS ONE ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. e0175783
Author(s):  
Yair Zarmi
2011 ◽  
Vol 66 (1-2) ◽  
pp. 19-23 ◽  
Author(s):  
Yifang Liu ◽  
Jiuping Chen ◽  
Weifeng Hu ◽  
Li-Li Zhu

The separation transformation method is extended to the (1+N)-dimensional triple Sine-Gordon equation and a special type of implicitly exact solution for this equation is obtained. The exact solution contains an arbitrary function which may lead to abundant localized structures of the high dimensional nonlinear wave equations. The separation transformation method in this paper can also be applied to other kinds of high-dimensional nonlinear wave equations


Author(s):  
Dmitry E. Pelinovsky ◽  
Robert E. White

We derive exact solutions to the sine-Gordon equation describing localized structures on the background of librational and rotational travelling waves. In the case of librational waves, the exact solution represents a localized spike in space-time coordinates (a rogue wave) that decays to the periodic background algebraically fast. In the case of rotational waves, the exact solution represents a kink propagating on the periodic background and decaying algebraically in the transverse direction to its propagation. These solutions model the universal patterns in the dynamics of fluxon condensates in the semi-classical limit. The different dynamics are related to modulational instability of the librational waves and modulational stability of the rotational waves.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
S. Y. Lou ◽  
X. B. Hu ◽  
Q. P. Liu

Abstract It is shown that the relativistic invariance plays a key role in the study of integrable systems. Using the relativistically invariant sine-Gordon equation, the Tzitzeica equation, the Toda fields and the second heavenly equation as dual relations, some continuous and discrete integrable positive hierarchies such as the potential modified Korteweg-de Vries hierarchy, the potential Fordy-Gibbons hierarchies, the potential dispersionless Kadomtsev-Petviashvili-like (dKPL) hierarchy, the differential-difference dKPL hierarchy and the second heavenly hierarchies are converted to the integrable negative hierarchies including the sG hierarchy and the Tzitzeica hierarchy, the two-dimensional dispersionless Toda hierarchy, the two-dimensional Toda hierarchies and negative heavenly hierarchy. In (1+1)-dimensional cases the positive/negative hierarchy dualities are guaranteed by the dualities between the recursion operators and their inverses. In (2+1)-dimensional cases, the positive/negative hierarchy dualities are explicitly shown by using the formal series symmetry approach, the mastersymmetry method and the relativistic invariance of the duality relations. For the 4-dimensional heavenly system, the duality problem is studied firstly by formal series symmetry approach. Two elegant commuting recursion operators of the heavenly equation appear naturally from the formal series symmetry approach so that the duality problem can also be studied by means of the recursion operators.


Sign in / Sign up

Export Citation Format

Share Document