scholarly journals Identification and in silico analysis of functional SNPs of human TAGAP protein: A comprehensive study

PLoS ONE ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. e0188143 ◽  
Author(s):  
Maria Arshad ◽  
Attya Bhatti ◽  
Peter John
2021 ◽  
Vol 49 (3) ◽  
pp. 12346
Author(s):  
Imran SAFDER ◽  
Gaoneng SHAO ◽  
Zhonghua SHENG ◽  
Peisong HU ◽  
Shaoqing TANG

SNPs are the most common nucleotide variations in the genome. Functional SNPs in the coding region, known as nonsynonymous SNPs (nsSNPs), change amino acid residues and affect protein function. Identifying functional SNPs is an uphill task as it is difficult to correlate between variation and phenotypes in association studies. Computational in silico analysis provides an opportunity to understand the SNPs functional impact to proteins and facilitate experimental approaches in understanding the relationship between the phenotype and genotype. Advancement in sequencing technologies contributed to sequencing thousands of genomes. As a result, many public databases have been designed incorporating this sequenced data to explore nucleotide variations. In this study, we explored functional SNPs in the rice GPAT family (as a model plant gene family), using 3000 Rice Genome Sequencing Project data. We identified 1056 SNPs, among hundred rice varieties in 26 GPAT genes, and filtered 98 nsSNPs. We further investigated the structural and functional impact of these nsSNPs using various computational tools and shortlisted 13 SNPs having high damaging effects on protein structure. We found that rice GPAT genes can be influenced by nsSNPs and they might have a major effect on regulation and function of GPAT genes. This information will be useful to understand the possible relationships between genetic mutation and phenotypic variation, and their functional implication on rice GPAT proteins. The study will also provide a computational pathway to identify SNPs in other rice gene families.


PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e43939 ◽  
Author(s):  
Ali A. Alshatwi ◽  
Tarique N. Hasan ◽  
Naveed A. Syed ◽  
Gowhat Shafi ◽  
B. Leena Grace

Genomics ◽  
2007 ◽  
Vol 90 (4) ◽  
pp. 447-452 ◽  
Author(s):  
R. Rajasekaran ◽  
C. Sudandiradoss ◽  
C. George Priya Doss ◽  
Rao Sethumadhavan

2020 ◽  
Vol 47 (6) ◽  
pp. 398-408
Author(s):  
Sonam Tulsyan ◽  
Showket Hussain ◽  
Balraj Mittal ◽  
Sundeep Singh Saluja ◽  
Pranay Tanwar ◽  
...  

2020 ◽  
Vol 27 (38) ◽  
pp. 6523-6535 ◽  
Author(s):  
Antreas Afantitis ◽  
Andreas Tsoumanis ◽  
Georgia Melagraki

Drug discovery as well as (nano)material design projects demand the in silico analysis of large datasets of compounds with their corresponding properties/activities, as well as the retrieval and virtual screening of more structures in an effort to identify new potent hits. This is a demanding procedure for which various tools must be combined with different input and output formats. To automate the data analysis required we have developed the necessary tools to facilitate a variety of important tasks to construct workflows that will simplify the handling, processing and modeling of cheminformatics data and will provide time and cost efficient solutions, reproducible and easier to maintain. We therefore develop and present a toolbox of >25 processing modules, Enalos+ nodes, that provide very useful operations within KNIME platform for users interested in the nanoinformatics and cheminformatics analysis of chemical and biological data. With a user-friendly interface, Enalos+ Nodes provide a broad range of important functionalities including data mining and retrieval from large available databases and tools for robust and predictive model development and validation. Enalos+ Nodes are available through KNIME as add-ins and offer valuable tools for extracting useful information and analyzing experimental and virtual screening results in a chem- or nano- informatics framework. On top of that, in an effort to: (i) allow big data analysis through Enalos+ KNIME nodes, (ii) accelerate time demanding computations performed within Enalos+ KNIME nodes and (iii) propose new time and cost efficient nodes integrated within Enalos+ toolbox we have investigated and verified the advantage of GPU calculations within the Enalos+ nodes. Demonstration data sets, tutorial and educational videos allow the user to easily apprehend the functions of the nodes that can be applied for in silico analysis of data.


2013 ◽  
Vol 9 (4) ◽  
pp. 608-616 ◽  
Author(s):  
Zaheer Ul-Haq ◽  
Saman Usmani ◽  
Uzma Mahmood ◽  
Mariya al-Rashida ◽  
Ghulam Abbas

Sign in / Sign up

Export Citation Format

Share Document