In silico Analysis of AMP-activated Protein Kinase and Ligand-based Virtual Screening for Identification of Novel AMPK Activators

Author(s):  
Ammarah Ghaffar ◽  
Sidra Batool ◽  
Gohar Mushtaq ◽  
Muhammad A. Kamal
2020 ◽  
Vol 27 (38) ◽  
pp. 6523-6535 ◽  
Author(s):  
Antreas Afantitis ◽  
Andreas Tsoumanis ◽  
Georgia Melagraki

Drug discovery as well as (nano)material design projects demand the in silico analysis of large datasets of compounds with their corresponding properties/activities, as well as the retrieval and virtual screening of more structures in an effort to identify new potent hits. This is a demanding procedure for which various tools must be combined with different input and output formats. To automate the data analysis required we have developed the necessary tools to facilitate a variety of important tasks to construct workflows that will simplify the handling, processing and modeling of cheminformatics data and will provide time and cost efficient solutions, reproducible and easier to maintain. We therefore develop and present a toolbox of >25 processing modules, Enalos+ nodes, that provide very useful operations within KNIME platform for users interested in the nanoinformatics and cheminformatics analysis of chemical and biological data. With a user-friendly interface, Enalos+ Nodes provide a broad range of important functionalities including data mining and retrieval from large available databases and tools for robust and predictive model development and validation. Enalos+ Nodes are available through KNIME as add-ins and offer valuable tools for extracting useful information and analyzing experimental and virtual screening results in a chem- or nano- informatics framework. On top of that, in an effort to: (i) allow big data analysis through Enalos+ KNIME nodes, (ii) accelerate time demanding computations performed within Enalos+ KNIME nodes and (iii) propose new time and cost efficient nodes integrated within Enalos+ toolbox we have investigated and verified the advantage of GPU calculations within the Enalos+ nodes. Demonstration data sets, tutorial and educational videos allow the user to easily apprehend the functions of the nodes that can be applied for in silico analysis of data.


Marine Drugs ◽  
2019 ◽  
Vol 17 (11) ◽  
pp. 639 ◽  
Author(s):  
Md. Abdul Hannan ◽  
Raju Dash ◽  
Abdullah Al Mamun Sohag ◽  
Il Soo Moon

Fucosterol is an algae-derived unique phytosterol having several medicinal properties, including antioxidant, anti-inflammatory, anticholinesterase, neuroprotective, and so on. Accumulated evidence suggests a therapeutic promise of fucosterol in neurodegeneration; however, the in-depth pharmacological mechanism of its neuroprotection is poorly understood. Here, we employed system pharmacology and in silico analysis to elucidate the underlying mechanism of neuropharmacological action of fucosterol against neurodegenerative disorders (NDD). Network pharmacology revealed that fucosterol targets signaling molecules, receptors, enzymes, transporters, transcription factors, cytoskeletal, and various other proteins of cellular pathways, including tumor necrosis factor (TNF), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), neurotrophin, and toll-like receptor (TLR) signaling, which are intimately associated with neuronal survival, immune response, and inflammation. Moreover, the molecular simulation study further verified that fucosterol exhibited a significant binding affinity to some of the vital targets, including liver X-receptor-beta (LXR-), glucocorticoid receptor (GR), tropomyosin receptor kinase B (TrkB), toll-like receptor 2/4 (TLR2/4), and β -secretase (BACE1), which are the crucial regulators of molecular and cellular processes associated with NDD. Together, the present system pharmacology and in silico findings demonstrate that fucosterol might play a significant role in modulating NDD-pathobiology, supporting its therapeutic application for the prevention and treatment of NDD.


2020 ◽  
pp. 1-14
Author(s):  
Sidra Batool ◽  
Muhammad Sibte Hasan Mahmood ◽  
Tiyyaba Furqan ◽  
Sidra Batool

MicroRNAs (miRNAs) are small non-coding RNA’s that controls the regulation of a gene. Due to the over expression or under expression of miRNAs it leads to cause tumor or any other type of cancers such as, melanoma, lymphoma, cardiovascular issue, breast cancer etc. So, miRNAs can be used as a drug target for cancer therapy. This study aimed to check binding cavities of microRNA's involved in regulation of CDK6 protein. There are 23 different families of miRNAs that are involved in regulation of CDK6. Each family has one or more miRNAs. All these miRNAs are involved in the up regulation or downregulation of a gene, which lead to different type of cancers. All miRNAs of each family docked with mRNA CDK6 protein. After performing in silico analysis of binding interactions of mRNA with miRNAs the results were further refined by their comparison with information regarding their energies, interaction of the mRNA and miRNAs. The results show that all miRNAs lie in Protein Kinase domain, but the residues that lie is different within the families and across the families.


Author(s):  
G. Lalasa ◽  
S. Vijayaraj ◽  
K. Thamizhvanan ◽  
K. Chaithanyaveena

Objective: The objective of present study is the virtual screening of stilbene analogues followed by the in silico and in vitro evaluation for its anti protozoal activity.Methods: The method of virtual screening selected is the structure-based virtual screening using ChEMBL database. The in silico analysis was performed using auto dock tools 4.2. The docking was performed using 1T5F (Arginase I-OH complex) as the binding proteins which are drawn from the protein data bank.Results: The stilbene analogues from virtual screening are allowed to dock with the proteins the binding energies and docking positions were determined using auto dock tools 4.2. The in vitro evaluation of anti protozoal activity was performed.Conclusion: The stilbene analogues are capable of producing the antiprotozoal activity.


Author(s):  
I. V. Mineeva ◽  
Y. V. Faletrov ◽  
V. A. Starovoytova ◽  
V. M. Shkumatov

An effective method of synthesis thiazolo[3,2-a]pyrimidine derivatives was developed and the compounds with n-pentyl or β-acetoxycyclopropyl as well as fluorescent benzo[f]coumarin substituents were obtained with yields 60 % and more. Using computational (in silico) approaches we demonstrated the ability of the obtained compounds to permeate lipid bilayer as well as their affinity to some protein kinases (compounds 4 and 6 bind with a protein kinase AKT1 with PDB code 3о96; Autodock Vina-computed energy of binding (Ebind) values were -10.9 and -10.6 kcal/mol, respectively), acethylcholine esterase and some human cytochromes P450 (for P450 3A4, pdb 5vcd, Ebind -12.3 kcal/mol).


Sign in / Sign up

Export Citation Format

Share Document