scholarly journals Individual patient variability with the application of the kidney failure risk equation in advanced chronic kidney disease

PLoS ONE ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. e0198456 ◽  
Author(s):  
Christopher McCudden ◽  
Ayub Akbari ◽  
Christine A. White ◽  
Mohan Biyani ◽  
Swapnil Hiremath ◽  
...  
2018 ◽  
Vol 172 (2) ◽  
pp. 174 ◽  
Author(s):  
Erica Winnicki ◽  
Charles E. McCulloch ◽  
Mark M. Mitsnefes ◽  
Susan L. Furth ◽  
Bradley A. Warady ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ibrahim Ali ◽  
Rosemary L. Donne ◽  
Philip A. Kalra

Abstract Background The Kidney Failure Risk Equation (KFRE) predicts the 2- and 5-year risk of end-stage renal disease (ESRD) in patients with chronic kidney disease (CKD) stages 3a-5. Its predictive performance in advanced CKD and in specific disease aetiologies requires further exploration. This study validates the 4- and 8-variable KFREs in an advanced CKD population in the United Kingdom by evaluating discrimination, calibration and clinical utility. Methods Patients enrolled in the Salford Kidney Study who were referred to the Advanced Kidney Care Service (AKCS) clinic at Salford Royal NHS Foundation Trust between 2011 and 2018 were included. The 4- and 8-variable KFREs were calculated on the first AKCS visit and the observed events of ESRD (dialysis or pre-emptive transplantation) within 2- and 5-years were the primary outcome. The area under the receiver operator characteristic curve (AUC) and calibration plots were used to evaluate discrimination and calibration respectively in the whole cohort and in specific disease aetiologies: diabetic nephropathy, hypertensive nephropathy, glomerulonephritis, autosomal dominant polycystic kidney disease (ADPKD) and other diseases. Clinical utility was assessed with decision curve analyses, comparing the net benefit of using the KFREs against estimated glomerular filtration rate (eGFR) cut-offs of < 20 ml/min/1.73m2 and < 15 ml/min/1.73m2 to guide further treatment. Results A total of 743 patients comprised the 2-year analysis and 613 patients were in the 5-year analysis. Discrimination was good in the whole cohort: the 4-variable KFRE had an AUC of 0.796 (95% confidence interval [CI] 0.762–0.831) for predicting ESRD at 2-years and 0.773 (95% CI 0.736–0.810) at 5-years, and there was good-to-excellent discrimination across disease aetiologies. Calibration plots revealed underestimation of risk at 2-years and overestimation of risk at 5-years, especially in high-risk patients. There was, however, underestimation of risk in patients with ADPKD for all KFRE calculations. The predictive accuracy was similar between the 4- and 8-variable KFREs. Finally, compared to eGFR-based thresholds, the KFRE was the optimal tool to guide further care based on decision curve analyses. Conclusions The 4- and 8-variable KFREs demonstrate adequate discrimination and calibration for predicting ESRD in an advanced CKD population and, importantly, can provide better clinical utility than using an eGFR-based strategy to inform decision-making.


2020 ◽  
Vol 15 (10) ◽  
pp. 1424-1432
Author(s):  
Gregory L. Hundemer ◽  
Navdeep Tangri ◽  
Manish M. Sood ◽  
Tim Ramsay ◽  
Ann Bugeja ◽  
...  

Background and objectivesThe kidney failure risk equation is a clinical tool commonly used for prediction of progression from CKD to kidney failure. The kidney failure risk equation’s accuracy in advanced CKD and whether this varies by CKD etiology remains unknown. This study examined the kidney failure risk equation’s discrimination and calibration at 2 and 5 years among a large tertiary care population with advanced CKD from heterogeneous etiologies.Design, setting, participants, & measurementsThis retrospective cohort study included 1293 patients with advanced CKD (median eGFR 15 ml/min per 1.73 m2) referred to the Ottawa Hospital Multi-Care Kidney Clinic between 2010 and 2016, with follow-up clinical data available through 2018. Four-variable kidney failure risk equation scores for 2- and 5-year risks of progression to kidney failure (defined as dialysis or kidney transplantation) were calculated upon initial referral and correlated with the subsequent observed kidney failure incidence within these time frames. Receiver operating characteristic curves and calibration plots were used to measure the discrimination and calibration of the kidney failure risk equation both in the overall advanced CKD population and by CKD etiology: diabetic kidney disease, hypertensive nephrosclerosis, GN, polycystic kidney disease, and other. Pairwise comparisons of the receiver operating characteristic curves by CKD etiology were performed to compare kidney failure risk equation discrimination.ResultsThe kidney failure risk equation provided adequate to excellent discrimination in identifying patients with CKD likely to progress to kidney failure at the 2- and 5-year time points both overall (2-year area under the curve, 0.83; 95% confidence interval, 0.81 to 0.85; 5-year area under the curve, 0.81; 95% confidence interval, 0.77 to 0.84) and across CKD etiologies. The kidney failure risk equation displayed adequate calibration at the 2- and 5-year time points both overall and across CKD etiologies (Hosmer–Lemeshow P≥0.05); however, the predicted risks of kidney failure were higher than the observed risks across CKD etiologies with the exception of polycystic kidney disease.ConclusionsThe kidney failure risk equation provides adequate discrimination and calibration in advanced CKD and across CKD etiologies.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yeli Wang ◽  
Francis Ngoc Hoang Long Nguyen ◽  
John C. Allen ◽  
Jasmine Quan Lan Lew ◽  
Ngiap Chuan Tan ◽  
...  

Abstract Background Patients with chronic kidney disease (CKD) are at high risk of end-stage kidney disease (ESKD). The Kidney Failure Risk Equation (KFRE), which predicts ESKD risk among patients with CKD, has not been validated in primary care clinics in Southeast Asia (SEA). Therefore, we aimed to (1) evaluate the performance of existing KFRE equations, (2) recalibrate KFRE for better predictive precision, and (3) identify optimally feasible KFRE thresholds for nephrologist referral and dialysis planning in SEA. Methods All patients with CKD visiting nine primary care clinics from 2010 to 2013 in Singapore were included and applied 4-variable KFRE equations incorporating age, sex, estimated glomerular filtration rate (eGFR), and albumin-to-creatinine ratio (ACR). ESKD onset within two and five years were acquired via linkage to the Singapore Renal Registry. A weighted Brier score (the squared difference between observed vs predicted ESKD risks), bias (the median difference between observed vs predicted ESKD risks) and precision (the interquartile range of the bias) were used to select the best-calibrated KFRE equation. Results The recalibrated KFRE (named Recalibrated Pooled KFRE SEA) performed better than existing and other recalibrated KFRE equations in terms of having a smaller Brier score (square root: 2.8% vs. 4.0–9.3% at 5 years; 2.0% vs. 6.1–9.1% at 2 years), less bias (2.5% vs. 3.3–5.2% at 5 years; 1.8% vs. 3.2–3.6% at 2 years), and improved precision (0.5% vs. 1.7–5.2% at 5 years; 0.5% vs. 3.8–4.2% at 2 years). Area under ROC curve for the Recalibrated Pooled KFRE SEA equations were 0.94 (95% confidence interval [CI]: 0.93 to 0.95) at 5 years and 0.96 (95% CI: 0.95 to 0.97) at 2 years. The optimally feasible KFRE thresholds were > 10–16% for 5-year nephrologist referral and > 45% for 2-year dialysis planning. Using the Recalibrated Pooled KFRE SEA, an estimated 82 and 89% ESKD events were included among 10% of subjects at highest estimated risk of ESKD at 5-year and 2-year, respectively. Conclusions The Recalibrated Pooled KFRE SEA performs better than existing KFREs and warrants implementation in primary care settings in SEA.


Author(s):  
Francesco Bellocchio ◽  
Caterina Lonati ◽  
Jasmine Ion Titapiccolo ◽  
Jennifer Nadal ◽  
Heike Meiselbach ◽  
...  

Current equation-based risk stratification algorithms for kidney failure (KF) may have limited applicability in real world settings, where missing information may impede their computation for a large share of patients, hampering one from taking full advantage of the wealth of information collected in electronic health records. To overcome such limitations, we trained and validated the Prognostic Reasoning System for Chronic Kidney Disease (PROGRES-CKD), a novel algorithm predicting end-stage kidney disease (ESKD). PROGRES-CKD is a naïve Bayes classifier predicting ESKD onset within 6 and 24 months in adult, stage 3-to-5 CKD patients. PROGRES-CKD trained on 17,775 CKD patients treated in the Fresenius Medical Care (FMC) NephroCare network. The algorithm was validated in a second independent FMC cohort (n = 6760) and in the German Chronic Kidney Disease (GCKD) study cohort (n = 4058). We contrasted PROGRES-CKD accuracy against the performance of the Kidney Failure Risk Equation (KFRE). Discrimination accuracy in the validation cohorts was excellent for both short-term (stage 4–5 CKD, FMC: AUC = 0.90, 95%CI 0.88–0.91; GCKD: AUC = 0.91, 95% CI 0.86–0.97) and long-term (stage 3–5 CKD, FMC: AUC = 0.85, 95%CI 0.83–0.88; GCKD: AUC = 0.85, 95%CI 0.83–0.88) forecasting horizons. The performance of PROGRES-CKD was non-inferior to KFRE for the 24-month horizon and proved more accurate for the 6-month horizon forecast in both validation cohorts. In the real world setting captured in the FMC validation cohort, PROGRES-CKD was computable for all patients, whereas KFRE could be computed for complete cases only (i.e., 30% and 16% of the cohort in 6- and 24-month horizons). PROGRES-CKD accurately predicts KF onset among CKD patients. Contrary to equation-based scores, PROGRES-CKD extends to patients with incomplete data and allows explicit assessment of prediction robustness in case of missing values. PROGRES-CKD may efficiently assist physicians’ prognostic reasoning in real-life applications.


2020 ◽  
Vol 7 ◽  
pp. 205435812091127 ◽  
Author(s):  
Ayub Akbari ◽  
Navdeep Tangri ◽  
Pierre A. Brown ◽  
Mohan Biyani ◽  
Emily Rhodes ◽  
...  

Background: The kidney failure risk equation (KFRE) is a validated risk algorithm for predicting the risk of kidney failure in chronic kidney disease (CKD) patients regardless of etiology. Patients with autosomal dominant polycystic kidney disease (AD-PCKD) experience long disease trajectories and as such identifying individuals at risk of kidney failure would aid in intervention Objective: To examine the utility of the KFRE in predicting adverse kidney outcomes compared with existing risk factors in a cohort of patients with AD-PCKD. Methods: Retrospective cohort study of AD-PCKD patients referred to a tertiary care center with a baseline kidney ultrasound and a KFRE calculation. Cox proportional hazards were used to examine the association of the KFRE and composite of an eGFR decline of >30% or the need for dialysis/transplantation. Discrimination and calibration of a parsimonious fully adjusted model and a model containing only total kidney volume (TKV) with and without the addition of the KFRE was determined. Results: Of 340 patients with AD-PCKD eligible, 221 (65%) met inclusion criteria. Older age, cardiac disease, cancer, higher systolic blood pressure, albuminuria, lower eGFR and a higher initial TKV were more common in patients with a higher KFRE. A total of 120 events occurred over a median patient follow-up time of 3.2 years. KFRE was independently associated with the composite kidney outcome. Addition of the KFRE significantly improved discrimination and calibration in a TKV only model and a fully adjusted model. Conclusions: In a diverse, referral population with AD-PCKD, the KFRE was associated with adverse kidney outcomes and improved risk prediction.


2020 ◽  
Vol 5 (3) ◽  
pp. S252
Author(s):  
Y. Wang ◽  
F.N.H.L. Nguyen ◽  
J. Allen ◽  
J.Q.L. Lew ◽  
N.C. Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document