scholarly journals nNOS splice variants differentially regulate myofilament function but are dispensable for intracellular calcium and force transients in cardiac papillary muscles

PLoS ONE ◽  
2018 ◽  
Vol 13 (7) ◽  
pp. e0200834
Author(s):  
W. Glenn L. Kerrick ◽  
Yuanyuan Xu ◽  
Justin M. Percival
2004 ◽  
Vol 101 (3) ◽  
pp. 675-686 ◽  
Author(s):  
James D. Hannon ◽  
Mark J. Cody ◽  
David X. Sun ◽  
Philippe R. Housmans

Background Depression of myocardial contractility as a result of isoflurane appears to be greater in myocardial hypertrophy, and the cellular basis for this difference in susceptibility is not clear. In this study we examined the effects of isoflurane and sevoflurane on contractility and intracellular calcium in an animal model of pressure-overload hypertrophy. Methods Pressure-overload hypertrophy was established in young male ferrets by banding the main pulmonary artery for 1 month and the effects of isoflurane and sevoflurane on contractility and intracellular calcium ([Ca]i) were examined in isolated right ventricular papillary muscles, trabeculae, and myocytes. Intracellular calcium was measured with the bioluminescent photoprotein aequorin in isolated papillary muscles, and also with the fluorescent indicator fluo-3 in isolated ventricular myocytes. In addition, Ca sensitivity was assessed in isolated trabeculae after disruption of the surface membrane with a nonionic detergent (skinned fibers). Results In the presence of isoflurane and sevoflurane, papillary muscles from banded animals exhibited a greater depression of contractility and isolated ventricular myocytes showed a greater decrease in peak [Ca]i. Furthermore, baseline calcium sensitivity was decreased and the slope of the relationship between [Ca] and force was increased in skinned trabeculae from banded animals. Isoflurane decreased calcium sensitivity in trabeculae from both normal and banded animals. Conclusions These results suggest that changes in [Ca]i and altered calcium sensitivity are both responsible for the exaggerated effects of some volatile anesthetics on contractility in pressure-overload hypertrophy.


1988 ◽  
Vol 92 (3) ◽  
pp. 351-368 ◽  
Author(s):  
G L Smith ◽  
M Valdeolmillos ◽  
D A Eisner ◽  
D G Allen

In this paper we investigate the effects of caffeine (5-20 mM) on ferret papillary muscle. The intracellular Ca2+ concentration ( [Ca2+]i) was measured from the light emitted by the photoprotein aequorin, which had previously been microinjected into superficial cells. Isometric tension was measured simultaneously. The rapid application of caffeine produced a transient increase of [Ca2+]i, which decayed spontaneously within 2-3 s and was accompanied by a transient contracture. The removal of extracellular Na+ or an increase in the concentration of intracellular Na+ (produced by strophanthidin) increased the magnitude of the caffeine response. Cessation of stimulation for several minutes or stimulation at low rates decreased the magnitude of the stimulated twitch and Ca2+ transient. These maneuvers also decreased the size of the caffeine response. These results are consistent with the hypothesis that the caffeine-releasable pool of Ca2+ (sarcoplasmic reticulum) is modulated by maneuvers that affect contraction. Ryanodine (10 microM) decreased the magnitude of the caffeine response as well as that of the stimulated twitch. In contrast, the rapid removal of external Ca2+ abolished the systolic Ca2+ transient within 5 s, but had no effect on the caffeine response. From this we conclude that the abolition of twitch by Ca2+-free solutions is not due to depletion of the sarcoplasmic reticulum of Ca2+, but may be due to a requirement of Ca2+ entry into the cell to trigger Ca2+ release from the sarcoplasmic reticulum.


2003 ◽  
Vol 90 (5) ◽  
pp. 3352-3360 ◽  
Author(s):  
Manuel Kukuljan ◽  
Alison Taylor ◽  
Hilary Chouinard ◽  
Patricio Olguín ◽  
Cecilia V. Rojas ◽  
...  

Calcium-activated potassium channels regulate excitability of the adult nervous system. In contrast, little is known about the contribution of calcium-activated potassium channels to excitability of the embryonic nervous system when electrical membrane properties and intracellular calcium levels show dramatic changes. Embryonic Xenopus spinal neurons exhibit a well-characterized developmental program of excitability that involves several different currents including calcium-activated ones. Here, we show that a molecular determinant of calcium-activated potassium channels, xSlo, is expressed during Xenopus embryogenesis even prior to differentiation of excitable tissues. Five different xSlo variants are expressed in embryonic tissues as a consequence of alternative exon usage at a single splice site. One of these variants, xSlo59, is neural-specific, and its expression is limited to late stages of neuronal differentiation. However, expression of the four other variants occurs in both muscle and neurons at all stages of development examined. Electrophysiological analysis of recombinant xSlo channels reveals that the xSlo59 exon serves as a gain-of-function module and allows physiologically relevant levels of membrane potential and intracellular calcium to activate effectively the resultant channel. These results suggest that xSlo59 channels play a unique role in sculpting the excitable membrane properties of Xenopus spinal neurons.


Author(s):  
Joachim R. Sommer ◽  
Nancy R. Wallace

After Howell (1) had shown that ruthenium red treatment of fixed frog skeletal muscle caused collapse of the intermediate cisternae of the sarcoplasmic reticulum (SR), forming a pentalaminate structure by obi iterating the SR lumen, we demonstrated that the phenomenon involves the entire SR including the nuclear envelope and that it also occurs after treatment with other cations, including calcium (2,3,4).From these observations we have formulated a hypothesis which states that intracellular calcium taken up by the SR at the end of contraction causes the M rete to collapse at a certain threshold concentration as the first step in a subsequent centrifugal zippering of the free SR toward the junctional SR (JSR). This would cause a) bulk transport of SR contents, such as calcium and granular material (4) into the JSR and, b) electrical isolation of the free SR from the JSR.


2001 ◽  
Vol 120 (5) ◽  
pp. A507-A507
Author(s):  
D KANG ◽  
Y WHANG ◽  
J YOO ◽  
I SONG ◽  
J OH ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document