scholarly journals Morphological analysis of the alveolar bone of the anterior teeth in severe high-angle skeletal Class II and Class III malocclusions assessed with cone-beam computed tomography

PLoS ONE ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. e0210461
Author(s):  
Jing Ma ◽  
Jing Huang ◽  
Jiu-hui Jiang
2021 ◽  
Vol 24 (2) ◽  
Author(s):  
Mohammad Zandi ◽  
Abbas Shokri ◽  
Vahid Mollabashi ◽  
Zahed Eghdami ◽  
Payam Amini

Objetive: This study aimed to compare the anatomical characteristics of the mandible in patients with skeletal class I, II and class III disorders using cone beam computed tomography (CBCT). Material and Methods: CBCT scans of patients between 17 to 40 years taken with NewTom 3G CBCT system with 12-inch field of view (FOV) were selected from the archive. Lateral cephalograms were obtained from CBCT scans of patients, and type of skeletal malocclusion was determined (Class I, II or III). All CBCT scans were evaluated in the sagittal, coronal and axial planes using the N.N.T viewer software. Results: The ramus height and distance from the mandibular foramen to the sigmoid notch in class II patients were significantly different from those in skeletal class I (P < 0.005). Distance from the mandibular canal to the anterior border of ramus in class III individuals was significantly different from that in skeletal class I individuals (P < .005). Conclusion: Length of the body of mandible in skeletal class I was significantly different from that in skeletal class II and III patients. Also, ramus height in skeletal class I was significantly different from that in skeletal class II patients. CBCT had high efficacy for accurate identification of anatomical landmarks.   Keywords Prognathism; Retrognathism; Mandible; Anatomy; Cone beam computed tomography.


Open Medicine ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. 340-346
Author(s):  
Ying Jia ◽  
Hua Yang ◽  
Ping Li ◽  
Jiangyan Xiong ◽  
Bo Chen

AbstractThe dynamic correlation between teeth and denture morphology as well as the morphological positions needs to be explored.Methodology63 adult patients with skeletal class III malocclusions that met the inclusion criteria were enrolled and imaged with Cone Beam Computed Tomography (CBCT), and Digital Imaging and Communications in Medicine (DICOM) data were collected. The torque angle and axial inclination were measured and analyzed for the corona, root, and entire body of every tooth on the maxilla.ResultsThere is a statistically significant difference between the coronal axial inclination/coronal torque angle for the skeletal class III malocclusion cases and Andrew’s six keys of occlusion. On the sagittal plane of the maxillary denture (except that the secondary molar is inclined medial-distally), the remaining teeth are inclined towards the labia with slightly larger angles compared to the normal occlusion. In the coronal direction, the maxillary anterior teeth tend to have a corona that inclines medial-distally, whereas the posterior teeth have a buccal inclination compared to the normal occlusion.ConclusionSagittal and transversal compensations prevail in maxillary dentures; for the camouflaged treatment design for skeletal class III, there is limited scope of sagittal and transversal movements on the maxillary denture.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wener Chen ◽  
HungEn Mou ◽  
Yufen Qian ◽  
Liwen Qian

Abstract Background The aim of the study was to analyze the morphology and position of the tongue and hyoid bone in skeletal Class II patients with different vertical growth patterns by cone beam computed tomography in comparison to skeletal Class I patients. Methods Ninety subjects with malocclusion were divided into skeletal Class II and Class I groups by ANB angles. Based on different vertical growth patterns, subjects in each group were divided into 3 subgroups: high-angle group (MP-FH ≥ 32.0°), average-angle group (22.0° ≤ MP-FH < 32°) and low-angle group (MP-FH < 22°). The position and morphology of the tongue and hyoid bone were evaluated in the cone beam computed tomography images. The independent Student’s t‐test was used to compare the position and morphology of the tongue and hyoid bone between skeletal Class I and Class II groups. One-way analysis of variance (ANOVA) was used to compare the measurement indexes of different vertical facial patterns in each group. Results Patients in skeletal Class II group had lower tongue posture, and the tongue body was smaller than that of those in the Class I group (P < 0.05). The position of the hyoid bone was lower in the skeletal Class II group than in Class I group (P < 0.05). The tongue length and H-Me in the skeletal Class I group with a low angle were significantly larger than those with an average angle and high angle (P < 0.05). There was no significant difference in the position or morphology of the tongue and hyoid bone in the skeletal Class II group with different vertical facial patterns (P > 0.05). Conclusion Patients with skeletal Class II malocclusion have lower tongue posture, a smaller tongue body, and greater occurrence of posterior inferior hyoid bone position than skeletal Class I patients. The length of the mandibular body in skeletal Class I patients with a horizontal growth type is longer. The position and morphology of the tongue and hyoid bone were not greatly affected by vertical facial development in skeletal Class II patients.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Weiting Chen ◽  
Kaili Zhang ◽  
Dongxu Liu

Abstract Background Maxillary skeletal expanders (MSE) is effective for the treatment of maxillary transverse deformity. The purpose of the study was to analyse the palatal bone thickness in the of MSE implantation in patients with skeletal class III malocclusion. Methods A total of 80 adult patients (40 males, 40 females) with an average angle before treatment were divided into two groups, the skeletal class III malocclusion group and the skeletal I malocclusion group, based on sagittal facial type. Each group consisted of 40 patients, with a male to female ratio of 1:1. A cone-beam computed tomography scanner was employed to obtain DICOM data for all patients. The palatal bone thickness was measured at 45 sites with MIMICS 21.0 software, and SPSS 22.0 software was employed for statistical analysis. The bone thickness at different regions of the palate in the same group was analysed with one-way repeated measures ANOVA. Fisher’s least significant difference-t method was used for the comparison of pairs, and independent sample t test was employed to determine the significance of differences in the bone thickness at the same sites between the two groups. Results Palatal bone thickness was greater in the middle region of the midline area (P < 0.01), while the thickness in the middle and lateral areas in both groups was generally lower (P < 0.001). The bone in the anterior, middle, and posterior regions of the two groups became increasingly thin from the middle area toward the parapalatine region. The palatal bone was significantly thinner in the area 9.0 mm before the transverse palatine suture in the midline area, 9.0 mm before and after the transverse palatine suture in the middle area, and 9.0 mm after the transverse palatine suture in the lateral area. Conclusion The palatal bone was thinner in patients with class III malocclusion than in patients with class I malocclusion, with significant differences in some areas. The differences in bone thickness should be considered when MSE miniscrews are implanted. The anterior and middle palatal areas are safer for the implantation of miniscrews, while the thinness of the posterior palatal bone increases the risk of the miniscrews falling off and perforating.


Sign in / Sign up

Export Citation Format

Share Document