scholarly journals A localized surface plasmon resonance-amplified immunofluorescence biosensor for ultrasensitive and rapid detection of nonstructural protein 1 of Zika virus

PLoS ONE ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. e0211517 ◽  
Author(s):  
Kenshin Takemura ◽  
Oluwasesan Adegoke ◽  
Tetsuro Suzuki ◽  
Enoch Y. Park
2018 ◽  
Vol 81 (5) ◽  
pp. 713-718 ◽  
Author(s):  
NARI LEE ◽  
SUNG-WOOK CHOI ◽  
HYUN-JOO CHANG ◽  
HYANG SOOK CHUN

ABSTRACT This study presents a method for rapid detection of Escherichia coli O157:H7 in fresh lettuce based on the properties of target separation and localized surface plasmon resonance of immunomagnetic nanoparticles. The multifunctional immunomagnetic nanoparticles enabling simultaneous separation and detection were prepared by synthesizing magnetic nanoparticles (ca. 10 nm in diameter) composed of an iron oxide (Fe3O4) core and gold shell and then conjugating these nanoparticles with the anti–E. coli O157:H7 antibodies. The application of multifunctional immunomagnetic nanoparticles for detecting E. coli O157:H7 in a lettuce matrix allowed detection of the presence of <1 log CFU mL−1 without prior enrichment. In contrast, the detection limit of the conventional plating method was 2.74 log CFU mL−1. The method, which requires no preenrichment, provides an alternative to conventional microbiological detection methods and can be used as a rapid screening tool for a large number of food samples.


2021 ◽  
pp. 2100653
Author(s):  
Gyeong‐Su Park ◽  
Kyung Suk Min ◽  
Hyuksang Kwon ◽  
Sangwoon Yoon ◽  
Sangwon Park ◽  
...  

Plasmonics ◽  
2021 ◽  
Author(s):  
Mohammad Rakibul Islam ◽  
Fahim Yasir ◽  
Md. Rakib Hossain Antor ◽  
Mahmudul Hassan Turja ◽  
Ashikur Rahman ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kohei Shimanoe ◽  
Soshi Endo ◽  
Tetsuya Matsuyama ◽  
Kenji Wada ◽  
Koichi Okamoto

AbstractLocalized surface plasmon resonance (LSPR) was performed in the deep ultraviolet (UVC) region with Al nanohemisphere structures fabricated by means of a simple method using a combination of vapor deposition, sputtering, and thermal annealing without top-down nanofabrication technology such as electron beam lithography. The LSPR in the UV region was obtained and tuned by the initial metal film thickness, annealing temperature, and dielectric spacer layer thickness. Moreover, we achieved a flexible tuning of the LSPR in a much deeper UVC region below 200 nm using a nanohemisphere on a mirror (NHoM) structure. NHoM is a structure in which a metal nanohemisphere is formed on a metal substrate that is interposed with an Al2O3 thin film layer. In the experimental validation, Al and Ga were used for the metal hemispheres. The LSPR spectrum of the NHoM structures was split into two peaks, and the peak intensities were enhanced and sharpened. The shorter branch of the LSPR peak appeared in the UVC region below 200 nm. Both the peak intensities and linewidth were flexibly tuned by the spacer thickness. This structure can contribute to new developments in the field of deep UV plasmonics.


RSC Advances ◽  
2015 ◽  
Vol 5 (31) ◽  
pp. 23990-23998 ◽  
Author(s):  
Gaoling Liang ◽  
Zhongjun Zhao ◽  
Yin Wei ◽  
Kunping Liu ◽  
Wenqian Hou ◽  
...  

A simple, label-free and cost-effective localized surface plasmon resonance (LSPR) immunosensing method was developed for detection of alpha-fetoprotein (AFP).


Sign in / Sign up

Export Citation Format

Share Document