scholarly journals Peripheral circadian rhythms in the liver and white adipose tissue of mice are attenuated by constant light and restored by time-restricted feeding

PLoS ONE ◽  
2020 ◽  
Vol 15 (6) ◽  
pp. e0234439 ◽  
Author(s):  
Daisuke Yamamuro ◽  
Manabu Takahashi ◽  
Shuichi Nagashima ◽  
Tetsuji Wakabayashi ◽  
Hisataka Yamazaki ◽  
...  
2012 ◽  
Vol 10 (3) ◽  
pp. 159-160
Author(s):  
Rianne van der Spek ◽  
Susanne la Fleur ◽  
Eric Fliers ◽  
Andries Kalsbeek

Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2185
Author(s):  
Samira Aouichat ◽  
Meriem Chayah ◽  
Souhila Bouguerra-Aouichat ◽  
Ahmad Agil

Time-restricted feeding (TRF) showed a potent effect in preventing obesity and improving metabolicoutcomes in several animal models of obesity. However, there is, as of yet, scarce evidence concerning its effectiveness against obesogenic challenges that more accurately mimic human Western diets, such as the cafeteria diet. Moreover, the mechanism for its efficacy is poorly understood. White adipose browning has been linked to body weight loss. Herein, we tested whether TRF has the potential to induce browning of inguinal white adipose tissue (iWAT) and to attenuate obesity and associated dyslipidemia in a cafeteria-diet-induced obesity model. Male Wistar rats were fed normal laboratory chow (NC) or cafeteria diet (CAF) for 16 weeks and were subdivided into two groups that were subjected to either ad libitum (ad lib, A) or TRF (R) for 8 h per day. Rats under the TRF regimen had a lower body weight gain and adiposity than the diet-matchedad lib rats, despite equivalent levels of food intake and locomotor activity. In addition, TRF improved the deranged lipid profile (total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL-c), low-density lipoprotein (LDL-c)) and atherogenic indices (atherogenic index of plasma (AIP), atherogenic coefficient (AC), coronary risk index (CRI) in CAF-fed rats. Remarkably, TRF resulted in decreased size of adipocytes and induced emergence of multilocular brown-like adipocytes in iWAT of NC- and CAF-fed rats. Protein expression of browning markers, such as uncoupling protein-1 (UCP1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), were also up-regulated in the iWAToftime-restricted NC- or CAF-fed rats. These findings suggest that a TRF regimen is an effective strategy to improve CAF diet-induced obesity, probably via a mechanismthe involving WAT browning process.


Author(s):  
Samira Aouichat ◽  
Souhila Bouguerra-Aouichat ◽  
Ahmad Agil

Time-restricted feeding (TRF) showed a potent effect in preventing obesity and improving metabolic outcomes in several animal model of obesity; however, there is, as yet, scarce evidence about its effectiveness against obesogenic challenge that more accurately mimic the human Western diets, such as cafeteria diet. Moreover, the mechanism for its efficacy is poorly understood. White adipose browning has been linked to body weight loss. Herein, we tested whether TRF has the potential to induce browning of inguinal white adipose tissue (iWAT) and to attenuate obesity and associated dyslipidemia in cafeteria diet-induced obesity model. Male Wistar rats, fed normal laboratory chow (NC) or cafeteria diet (CAF) for 16 weeks, were subdivided into two groups that were subjected to either ad libitum (ad lib, A) or TRF (R) for 8 hours per day. Rats under TRF regimen had a lower body weight gain and adiposity compared with their diet-matched ad lib rats, despite equivalent levels of food intake and locomotor activity. In addition, TRF improved the deranged lipid profile [total cholesterol (TC); triglycerides (TG); high density lipoprotein (HDL-c); low density lipoprotein (LDL-c)] and atherogenic indices [atherogenic index of plasma (AIP); atherogenic coefficient (AC); coronary risk index (CRI)] in rats fed CAF diet. Remarkably, TRF resulted in decreased size of adipocytes and induced emergence of multilocular brown-like adipocytes in iWAT of NC- and CAF-fed rats. Protein expression of browning markers, such as uncoupling protein-1 (UCP1) and peroxisome proliferator activated receptor gamma coactivator 1-alpha (PGC1α) in iWAT were also up-regulated in time restricted NC- or CAF-fed rats. These findings suggest that TRF regimen is an effective strategy to improve obesity and associated dyslipidemia induced by CAF-diet, probably via a mechanism involving WAT browning process.


Author(s):  
Rianne van der Spek ◽  
Felix Kreier ◽  
Eric Fliers ◽  
Andries Kalsbeek

Sign in / Sign up

Export Citation Format

Share Document