scholarly journals Properties of smooth pursuit and visual motion reaction time to second-order motion stimuli

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243430
Author(s):  
Takeshi Miyamoto ◽  
Kenichiro Miura ◽  
Tomohiro Kizuka ◽  
Seiji Ono

A large number of psychophysical and neurophysiological studies have demonstrated that smooth pursuit eye movements are tightly related to visual motion perception. This could be due to the fact that visual motion sensitive cortical areas such as meddle temporal (MT), medial superior temporal (MST) areas are involved in motion perception as well as pursuit initiation. Although the directional-discrimination and perceived target velocity tasks are used to evaluate visual motion perception, it is still uncertain whether the speed of visual motion perception, which is determined by visuomotor reaction time (RT) to a small target, is related to pursuit initiation. Therefore, we attempted to determine the relationship between pursuit latency/acceleration and the visual motion RT which was measured to the visual motion stimuli that moved leftward or rightward. The participants were instructed to fixate on a stationary target and press one of the buttons corresponding to the direction of target motion as soon as possible once the target starts to move. We applied five different visual motion stimuli including first- and second-order motion for smooth pursuit and visual motion RT tasks. It is well known that second-order motion induces lower retinal image motion, which elicits weaker responses in MT and MST compared to first-order motion stimuli. Our results showed that pursuit initiation including latency and initial eye acceleration were suppressed by second-order motion. In addition, second-order motion caused a delay in visual motion RT. The better performances in both pursuit initiation and visual motion RT were observed for first-order motion, whereas second-order (theta motion) induced remarkable deficits in both variables. Furthermore, significant Pearson’s correlation and within-subjects correlation coefficients were obtained between visual motion RT and pursuit latency/acceleration. Our findings support the suggestion that there is a common neuronal pathway involved in both pursuit initiation and the speed of visual motion perception.

2020 ◽  
Author(s):  
Xiuyun Wu ◽  
Austin C. Rothwell ◽  
Miriam Spering ◽  
Anna Montagnini

AbstractSmooth pursuit eye movements and visual motion perception rely on the integration of current sensory signals with past experience. Experience shapes our expectation of current visual events and can drive eye movement responses made in anticipation of a target, such as anticipatory pursuit. Previous research revealed consistent effects of expectation on anticipatory pursuit—eye movements follow the expected target direction or speed—and contrasting effects on motion perception, but most studies considered either eye movement or perceptual responses. The current study directly compared effects of direction expectation on perception and anticipatory pursuit within the same direction discrimination task to investigate whether both types of responses are affected similarly or differently. Observers (n = 10) viewed high-coherence random-dot kinematograms (RDKs) moving rightward and leftward with a probability of 50, 70, or 90% in a given block of trials to build up an expectation of motion direction. They were asked to judge motion direction of interleaved low-coherence RDKs (0-15%). Perceptual judgements were compared to changes in anticipatory pursuit eye movements as a function of probability. Results show that anticipatory pursuit velocity scaled with probability and followed direction expectation (attraction bias), whereas perceptual judgments were biased opposite to direction expectation (repulsion bias). Control experiments suggest that the repulsion bias in perception was not caused by retinal slip induced by anticipatory pursuit, or by motion adaptation. We conclude that direction expectation can be processed differently for perception and anticipatory pursuit.


2019 ◽  
Vol 5 (1) ◽  
pp. 247-268 ◽  
Author(s):  
Peter Thier ◽  
Akshay Markanday

The cerebellar cortex is a crystal-like structure consisting of an almost endless repetition of a canonical microcircuit that applies the same computational principle to different inputs. The output of this transformation is broadcasted to extracerebellar structures by way of the deep cerebellar nuclei. Visually guided eye movements are accommodated by different parts of the cerebellum. This review primarily discusses the role of the oculomotor part of the vermal cerebellum [the oculomotor vermis (OMV)] in the control of visually guided saccades and smooth-pursuit eye movements. Both types of eye movements require the mapping of retinal information onto motor vectors, a transformation that is optimized by the OMV, considering information on past performance. Unlike the role of the OMV in the guidance of eye movements, the contribution of the adjoining vermal cortex to visual motion perception is nonmotor and involves a cerebellar influence on information processing in the cerebral cortex.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sichao Yang ◽  
Johannes Bill ◽  
Jan Drugowitsch ◽  
Samuel J. Gershman

AbstractMotion relations in visual scenes carry an abundance of behaviorally relevant information, but little is known about how humans identify the structure underlying a scene’s motion in the first place. We studied the computations governing human motion structure identification in two psychophysics experiments and found that perception of motion relations showed hallmarks of Bayesian structural inference. At the heart of our research lies a tractable task design that enabled us to reveal the signatures of probabilistic reasoning about latent structure. We found that a choice model based on the task’s Bayesian ideal observer accurately matched many facets of human structural inference, including task performance, perceptual error patterns, single-trial responses, participant-specific differences, and subjective decision confidence—especially, when motion scenes were ambiguous and when object motion was hierarchically nested within other moving reference frames. Our work can guide future neuroscience experiments to reveal the neural mechanisms underlying higher-level visual motion perception.


Sign in / Sign up

Export Citation Format

Share Document