retinal information
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 6)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Amir Akbarian ◽  
Kelsey Clark ◽  
Behrad Noudoost ◽  
Neda Nategh

AbstractSaccadic eye movements (saccades) disrupt the continuous flow of visual information, yet our perception of the visual world remains uninterrupted. Here we assess the representation of the visual scene across saccades from single-trial spike trains of extrastriate visual areas, using a combined electrophysiology and statistical modeling approach. Using a model-based decoder we generate a high temporal resolution readout of visual information, and identify the specific changes in neurons’ spatiotemporal sensitivity that underly an integrated perisaccadic representation of visual space. Our results show that by maintaining a memory of the visual scene, extrastriate neurons produce an uninterrupted representation of the visual world. Extrastriate neurons exhibit a late response enhancement close to the time of saccade onset, which preserves the latest pre-saccadic information until the post-saccadic flow of retinal information resumes. These results show how our brain exploits available information to maintain a representation of the scene while visual inputs are disrupted.


2020 ◽  
Author(s):  
Liang Liang ◽  
Alex Fratzl ◽  
Omar El Mansour ◽  
Jasmine D.S. Reggiani ◽  
Chinfei Chen ◽  
...  

SummaryHow sensory information is processed by the brain can depend on behavioral state. In the visual thalamus and cortex, arousal/locomotion is associated with changes in the magnitude of responses to visual stimuli. Here, we asked whether such modulation of visual responses might already occur at an earlier stage in this visual pathway. We measured neural activity of retinal axons using wide-field and two-photon calcium imaging in awake mouse thalamus across arousal states associated with different pupil sizes. Surprisingly, visual responses to drifting gratings in retinal axonal boutons were robustly modulated by arousal level, in a manner that varied across stimulus dimensions and across functionally distinct subsets of boutons. At low and intermediate spatial frequencies, the majority of boutons were suppressed by arousal. In contrast, at high spatial frequencies, the proportions of boutons showing enhancement or suppression were more similar, particularly for boutons tuned to regions of visual space ahead of the mouse. Arousal-related modulation also varied with a bouton’s sensitivity to luminance changes and direction of motion, with greater response suppression in boutons tuned to luminance decrements vs. increments, and in boutons preferring motion along directions or axes of optic flow. Together, our results suggest that differential filtering of distinct visual information channels by arousal state occurs at very early stages of visual processing, before the information is transmitted to neurons in visual thalamus. Such early filtering may provide an efficient means of optimizing central visual processing and perception of state-relevant visual stimuli.


2019 ◽  
Vol 5 (1) ◽  
pp. 247-268 ◽  
Author(s):  
Peter Thier ◽  
Akshay Markanday

The cerebellar cortex is a crystal-like structure consisting of an almost endless repetition of a canonical microcircuit that applies the same computational principle to different inputs. The output of this transformation is broadcasted to extracerebellar structures by way of the deep cerebellar nuclei. Visually guided eye movements are accommodated by different parts of the cerebellum. This review primarily discusses the role of the oculomotor part of the vermal cerebellum [the oculomotor vermis (OMV)] in the control of visually guided saccades and smooth-pursuit eye movements. Both types of eye movements require the mapping of retinal information onto motor vectors, a transformation that is optimized by the OMV, considering information on past performance. Unlike the role of the OMV in the guidance of eye movements, the contribution of the adjoining vermal cortex to visual motion perception is nonmotor and involves a cerebellar influence on information processing in the cerebral cortex.


2019 ◽  
Vol 8 (2) ◽  
pp. 63-70
Author(s):  
R. Manjunatha ◽  
H. S. Sheshadri

A retinal vessel width measurement algorithm is presented towards ROP (Retinopathy of Prematurity) plus diagnostic automation. The algorithm involving geometrical feature extraction with the image processing is used to compute the effective width of the major vessels in a retinal image. Width measurement is shown to be a statistical parameter estimation related to the statistics of the retinal information. The algorithm is applied to the generic data bases available and the results are found to be satisfactory with ophthalmologist opinion. The effectiveness of the algorithm depends on the fundus image capturing settings.


i-Perception ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 204166951984004 ◽  
Author(s):  
Jordy Thielen ◽  
Sander E. Bosch ◽  
Tessa M. van Leeuwen ◽  
Marcel A. J. van Gerven ◽  
Rob van Lier

Amodal completion is the phenomenon of perceiving completed objects even though physically they are partially occluded. In this review, we provide an extensive overview of the results obtained from a variety of neuroimaging studies on the neural correlates of amodal completion. We discuss whether low-level and high-level cortical areas are implicated in amodal completion; provide an overview of how amodal completion unfolds over time while dissociating feedforward, recurrent, and feedback processes; and discuss how amodal completion is represented at the neuronal level. The involvement of low-level visual areas such as V1 and V2 is not yet clear, while several high-level structures such as the lateral occipital complex and fusiform face area seem invariant to occlusion of objects and faces, respectively, and several motor areas seem to code for object permanence. The variety of results on the timing of amodal completion hints to a mixture of feedforward, recurrent, and feedback processes. We discuss whether the invisible parts of the occluded object are represented as if they were visible, contrary to a high-level representation. While plenty of questions on amodal completion remain, this review presents an overview of the neuroimaging findings reported to date, summarizes several insights from computational models, and connects research of other perceptual completion processes such as modal completion. In all, it is suggested that amodal completion is the solution to deal with various types of incomplete retinal information, and highly depends on stimulus complexity and saliency, and therefore also give rise to a variety of observed neural patterns.


2018 ◽  
Author(s):  
Sreya Banerjee ◽  
Walter J. Scheirer ◽  
Lei Li

AbstractWe propose a computational model of vision that describes the integration of cross-modal sensory information between the olfactory and visual systems in zebrafish based on the principles of the statistical extreme value theory. The integration of olfacto-retinal information is mediated by the centrifugal pathway that originates from the olfactory bulb and terminates in the neural retina. Motivation for using extreme value theory stems from physiological evidence suggesting that extremes and not the mean of the cell responses direct cellular activity in the vertebrate brain. We argue that the visual system, as measured by retinal ganglion cell responses in spikes/sec, follows an extreme value process for sensory integration and the increase in visual sensitivity from the olfactory input can be better modeled using extreme value distributions. As zebrafish maintains high evolutionary proximity to mammals, our model can be extended to other vertebrates as well.


2018 ◽  
Vol 18 (10) ◽  
pp. 1292
Author(s):  
Avi Aizenman ◽  
Dennis Levi ◽  
Preeti Verghese ◽  
Sevda Agaoglu

2018 ◽  
Vol 120 (1) ◽  
pp. 211-225 ◽  
Author(s):  
William Guido

The dorsal lateral geniculate nucleus (dLGN) of the thalamus is the exclusive relay of retinal information en route to the visual cortex. Although much of our understanding about dLGN comes from studies done in higher mammals, such as the cat and primate, the mouse as a model organism has moved to the forefront as a tractable experimental platform to examine cell type-specific relations. This review highlights our current knowledge about the development, structure, and function of the mouse dLGN.


2018 ◽  
Vol 119 (4) ◽  
pp. 1411-1421 ◽  
Author(s):  
Valeria C. Caruso ◽  
Daniel S. Pages ◽  
Marc A. Sommer ◽  
Jennifer M. Groh

We accurately perceive the visual scene despite moving our eyes ~3 times per second, an ability that requires incorporation of eye position and retinal information. In this study, we assessed how this neural computation unfolds across three interconnected structures: frontal eye fields (FEF), intraparietal cortex (LIP/MIP), and the superior colliculus (SC). Single-unit activity was assessed in head-restrained monkeys performing visually guided saccades from different initial fixations. As previously shown, the receptive fields of most LIP/MIP neurons shifted to novel positions on the retina for each eye position, and these locations were not clearly related to each other in either eye- or head-centered coordinates (defined as hybrid coordinates). In contrast, the receptive fields of most SC neurons were stable in eye-centered coordinates. In FEF, visual signals were intermediate between those patterns: around 60% were eye-centered, whereas the remainder showed changes in receptive field location, boundaries, or responsiveness that rendered the response patterns hybrid or occasionally head-centered. These results suggest that FEF may act as a transitional step in an evolution of coordinates between LIP/MIP and SC. The persistence across cortical areas of mixed representations that do not provide unequivocal location labels in a consistent reference frame has implications for how these representations must be read out. NEW & NOTEWORTHY How we perceive the world as stable using mobile retinas is poorly understood. We compared the stability of visual receptive fields across different fixation positions in three visuomotor regions. Irregular changes in receptive field position were ubiquitous in intraparietal cortex, evident but less common in the frontal eye fields, and negligible in the superior colliculus (SC), where receptive fields shifted reliably across fixations. Only the SC provides a stable labeled-line code for stimuli across saccades.


Sign in / Sign up

Export Citation Format

Share Document