scholarly journals Acetone application for administration of bioactive substances has no negative effects on longevity, fitness, and sexual communication in a parasitic wasp

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245698
Author(s):  
Anne-Sophie Jatsch ◽  
Joachim Ruther

Administration of defined amounts of bioactive substances is a perseverative problem in physiological studies on insects. Apart from feeding and injection, topical application of solutions of the chemicals is most commonly used for this purpose. The solvents used should be non-toxic and have least possible effects on the studied parameters. Acetone is widely used for administration of chemical substances to insects, but possible side-effects of acetone application on fitness and behavioral parameters have been rarely investigated. Here we study the effects of acetone application (207 nl) on fitness and sexual communication in the parasitic wasp Nasonia giraulti Darling. Application of acetone had neither negative effects on longevity nor on offspring number and offspring sex ratio of treated wasps. Treatment of females hampered courtship and mating of N. giraulti couples neither directly after application nor one day after. Male sex pheromone titers were not influenced by acetone treatment. Three application examples demonstrate that topical acetone application is capable of bringing active amounts of insect hormones, neuromodulators, and biosynthetic precursors even in tiny insects. We advocate the use of acetone as a convenient, conservative, and broadly applicable vehicle for studying the effects of bioactive substances in insects.

2004 ◽  
Vol 10 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Bernt-Erik Sæther ◽  
Erling J. Solberg ◽  
Morten Heim ◽  
John E. Stacy ◽  
Kjetill S. Jakobsen ◽  
...  

2011 ◽  
Vol 45 (1) ◽  
pp. 55-57 ◽  
Author(s):  
M O M Chelini ◽  
N L Souza ◽  
E Otta

2018 ◽  
Vol 285 (1891) ◽  
pp. 20181251 ◽  
Author(s):  
Andrea E. Wishart ◽  
Cory T. Williams ◽  
Andrew G. McAdam ◽  
Stan Boutin ◽  
Ben Dantzer ◽  
...  

Fisher's principle explains that population sex ratio in sexually reproducing organisms is maintained at 1 : 1 owing to negative frequency-dependent selection, such that individuals of the rare sex realize greater reproductive opportunity than individuals of the more common sex until equilibrium is reached. If biasing offspring sex ratio towards the rare sex is adaptive, individuals that do so should have more grandoffspring. In a wild population of North American red squirrels ( Tamiasciurus hudsonicus ) that experiences fluctuations in resource abundance and population density, we show that overall across 26 years, the secondary sex ratio was 1 : 1; however, stretches of years during which adult sex ratio was biased did not yield offspring sex ratios biased towards the rare sex. Females that had litters biased towards the rare sex did not have more grandoffspring. Critically, the adult sex ratio was not temporally autocorrelated across years, thus the population sex ratio experienced by parents was independent of the population sex ratio experienced by their offspring at their primiparity. Expected fitness benefits of biasing offspring sex ratio may be masked or negated by fluctuating environments across years, which limit the predictive value of the current sex ratio.


Sign in / Sign up

Export Citation Format

Share Document