nest temperature
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 6)

H-INDEX

19
(FIVE YEARS 0)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Shang ◽  
Liang Zhang ◽  
Xinyu Li ◽  
Shuping Zhang

Abstract Background In high latitude grassland habitats, altricial nestlings hatching in open-cup nests early in the breeding season must cope with cold temperature challenges. Thyroid hormones (triiodothyronine, T3 and thyroxine, T4) and corticosterone play a crucial role in avian thermoregulation response to cold. Investigating the endocrine response of altricial nestlings to temperature variation is important for understanding the adaptive mechanisms of individual variation in the timing of breeding in birds. Methods We compared nest temperature, ambient temperature, body temperature, plasma T3, T4 and corticosterone levels in Asian Short-toed Lark (Alaudala cheleensis) nestlings hatching in the early-, middle-, and late-stages of the breeding season in Hulunbuir grassland, northeast China. Results Mean nest temperature in the early-, middle- and late-stage groups was − 1.85, 3.81 and 10.23 °C, respectively, for the 3-day-old nestlings, and 6.83, 10.41 and 11.81 °C, respectively, for the 6-day-old nestlings. The nest temperature significantly correlated with body temperature, plasma T3, T4 and corticosterone concentrations of nestlings. Body temperature of 3-day-old nestlings in the early and middle groups was significantly lower than that of the late group, but there was no significant difference between the nestlings in the early and middle groups. The T4 and T3 concentrations and the ratio of T3/T4 of both 3- and 6-day-old nestlings in the early-stage group were significantly higher compared to the middle and late groups. The corticosterone levels of 3-day-old nestlings were significantly higher in the early-stage group compared to the middle- and late-stage groups. Conclusion Nestlings hatching early responded to cold temperature by increasing thyroid hormones and corticosterone levels even in the early days of post hatching development when the endothermy has not been established. These hormones may play a physiological role in neonatal nestlings coping with cold temperature challenges.



2021 ◽  
Vol 9 ◽  
Author(s):  
Natalie E. van Dis ◽  
Kamiel Spoelstra ◽  
Marcel E. Visser ◽  
Davide M. Dominoni

Artificial light at night (ALAN) has been recognized as a biodiversity threat due to the drastic effects it can have on many organisms. In wild birds, artificial illumination alters many natural behaviors that are important for fitness, including chick provisioning. Although incubation is a key determinant of the early developmental environment, studies into the effects of ALAN on bird incubation behavior are lacking. We measured nest temperature in nest boxes of great tits during the incubation period in two consecutive years. Nest boxes were located in eight previously dark field sites that have been experimentally illuminated since 2012 with white, green, or red light, or were left dark. We tested if light treatment affected mean nest temperature, number of times birds leave the nest (off-bout frequency), and off-bout duration during the incubation period. Subsequently, we investigated if incubation behavior is related to fitness. We found that birds incubating in the white light during a cold, early spring had lower mean nest temperatures at the end of incubation, both during the day and during the night, compared to birds in the green light. Moreover, birds incubating in white light took fewer off-bouts, but off-bouts were on average longer. The opposite was true for birds breeding in the green light. Low incubation temperatures and few but long off-bouts can have severe consequences for developing embryos. In our study, eggs from birds that took on average few off-bouts needed more incubation days to hatch compared to eggs from birds that took many off-bouts. Nevertheless, we found no clear fitness effects of light treatment or incubation behavior on the number of hatchlings or hatchling weight. Our results add to the growing body of literature that shows that effects of ALAN can be subtle, can differ due to the spectral composition of light, and can be year-dependent. These subtle alterations of natural behaviors might not have severe fitness consequences in the short-term. However, in the long term they could add up, negatively affecting parent condition and survival as well as offspring recruitment, especially in urban environments where more environmental pollutants are present.



2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Emmanuel Amoah ◽  
Emmanuel Danquah ◽  
James Perran Ross

West African dwarf crocodiles (Osteolaemus sp. nov. cf. tetraspis) are among the most threatened crocodilians in the world due to unregulated hunting and habitat loss-related population decline. Despite this, many questions about their basic ecology remain unanswered and this inadequate data hampers effective dwarf crocodile management. We describe incubation temperature, nesting success, hatching rate, and clutch size of West African dwarf crocodiles. We monitored 18 nests from the 2017 and 2018 nesting seasons in the Chirehin Community Land—a highly disturbed agricultural matrix in the climatic transition zone of Ghana. We used Hobo tidbit® data loggers to monitor egg chamber temperature and the effect of ambient temperature on nest temperature. The daily mean incubation temperature recorded during the study was 30.7°C (±SD = 0.8°C, n = 240, range = 28–33°C) and it is congruent with the reported value for the species. The findings from this study suggest a weak positive to no correlation between dwarf crocodile incubation temperature and ambient temperature indicating nest temperature is almost independent of ambient temperature. We found a mean clutch size of 8 eggs per nest (SD = ±2; range = 5–13; n = 17) supporting previous reports that this genus has a low clutch size. The mean nesting success and hatching success across the two seasons were 77.8% and 75.3% (SD = ±41.9, n = 18), respectively. Three nests were destroyed by flood and one by an unknown predator suspected to be a West African Nile monitor lizard. Generally, dwarf crocodiles selected forest patches within the highly disturbed landscape for nesting indicating the need to protect the remaining forest patches. Efforts should be made to repeat the study across this species’ range for an improved understanding of its nesting ecology.



2021 ◽  
pp. 103012
Author(s):  
René Barragán Lara ◽  
Jesús García Grajales ◽  
Emilio Martínez Ramírez




Author(s):  
CE Smith ◽  
DT Booth ◽  
A Crosby ◽  
JD Miller ◽  
MN Staines ◽  
...  


Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 528
Author(s):  
Michael Goblirsch ◽  
Jenny F. Warner ◽  
Brooke A. Sommerfeldt ◽  
Marla Spivak

Honey bees use several strategies to protect themselves and the colony from parasites and pathogens. In addition to individual immunity, social immunity involves the cumulative effort of some individuals to limit the spread of parasites and pathogens to uninfected nestmates. Examples of social immunity in honey bees that have received attention include hygienic behavior, or the removal of diseased brood, and the collection and deposition of antimicrobial resins (propolis) on interior nest surfaces. Advances in our understanding of another form of social immunity, social fever, are lacking. Honey bees were shown to raise the temperature of the nest in response to temperature-sensitive brood pathogen, Ascosphaera apis. The increase in nest temperature (−0.6 °C) is thought to limit the spread of A. apis infection to uninfected immatures. We established observation hives and monitored the temperature of the brood nest for 40 days. This observation period was broken into five distinct segments, corresponding to sucrose solution feedings—Pre-Feed, Feed I, Challenge, Feed II, and Post-Feed. Ascosphaera apis was administered to colonies as a 1% solution of ground sporulating chalkbrood mummies in 50% v/v sucrose solution, during the Challenge period. Like previous reports, we observed a modest increase in brood nest temperature during the Challenge period. However, all hives presented signs of chalkbrood disease, suggesting that elevation of the nest temperature was not sufficient to stop the spread of infection among immatures. We also began to explore the molecular mechanisms of temperature increase by exposing adult bees in cages to A. apis, without the presence of immatures. Compared to adult workers who were given sucrose solution only, workers exposed to A. apis showed increased expression of the antimicrobial peptides abaecin (p = 0.07) and hymenoptaecin (p = 0.04), but expression of the heat shock response protein Hsp 70Ab-like (p = 0.76) and the nutritional marker vitellogenin (p = 0.72) were unaffected. These results indicate that adult honey bee workers exposed to a brood pathogen elevate the temperature of the brood nest and initiate an immune response, but the effect of this fever on preventing disease requires further study.



2020 ◽  
Vol 132 (1) ◽  
pp. 83
Author(s):  
Rachel L. Carroll ◽  
Craig A. Davis ◽  
Samuel D. Fuhlendorf ◽  
R. Dwayne Elmore ◽  
J. Matthew Carroll


2020 ◽  
Vol 68 (3) ◽  
Author(s):  
Randy Calderón-Peña ◽  
Ryan Betancourt-Avila ◽  
Elizabeth Rodríguez-Fajardo ◽  
Yoel Martínez-González ◽  
Julia Azanza Ricardo

Introduction: Sea turtles have temperature dependent sex determination. The increase in global temperature leads to higher nest temperatures that can cause a prevalence of females, threatening the future of these species. Objective: The present work aims to evaluate the trend of incubation temperatures and the incubation period, as well as to estimate the sex ratio in nests of Chelonia mydas at Antonio and La Barca beaches, Southwestern Cuba, during the seasons from 2012 to 2018. Methods: Temperature data loggers were placed in green turtle nests with a representativeness that varied between the years analyzed. To assess the temporal variation of temperatures and incubation periods, a Kruskal-Wallis test was performed in each case. Sex ratio was estimated from its relation with temperature and incubation duration. Results: At La Barca beach, there was a 1.5 °C increase in the mean nest temperature from 2012 to 2018, although no differences were found in the period from 2015 to 2018. At Antonio beach, there is no trend since no differences were found in the mean nest temperature except for the years 2013 and 2017, which had lower temperatures than the other seasons. In both beaches mean nest temperature exceeded 30 °C in most of the years. As a result, there was a predominance of nests with incubation periods shorter than 55 days. With these values, a female hatchling production over 90 % is expected in both study sites. Conclusions: In correspondence with the registered temperature and incubation period values, most of the years reflect a hatchling production biased towards females in both beaches.



Cassowary ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 21-31
Author(s):  
Aditya P. Tarigan ◽  
Ricardo F. Tapilatu ◽  
Marthin Matulessy

The research took place between May and October 2019, and divided into two stages. The first stage was field research to collect data by identifying turtles, calculating hatching successes, measuring the temperature of the nesting beach and nest temperature of each species of turtle in semi-natural nests at Warebar Beach, Yenbekaki village, East Waigeo Sub District, Raja Ampat. The second stage after the field was conducting an analysis of hatching rate in hatchery, sand temperature and nest temperature for each species of turtle. The species of turtles nesting at Warebar Beach are olive-ridley  (Lepidochelys olivacea) and hawksbill (Eretmochelys imbricata) turtles. Based on the measurement results at semi-natural nests, it was obtained that the hatching rate of olive ridley sea turtle was 71.6%±28.3 (X±SD) and hawksbill sea turtle was 59.8%±41.3, the overall mean temperature of nesting beach was 28oC, the mean incubation temperature for both sea turtle species was 31oC.



Sign in / Sign up

Export Citation Format

Share Document