scholarly journals CRISPR/Cas9-mediated mutagenesis of sweet basil candidate susceptibility gene ObDMR6 enhances downy mildew resistance

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253245
Author(s):  
Jeremieh Abram R. Hasley ◽  
Natasha Navet ◽  
Miaoying Tian

Sweet basil (Ocimum basilicum) is an economically important allotetraploid (2n = 4x = 48) herb whose global production is threatened by downy mildew disease caused by the obligate biotrophic oomycete, Peronospora belbahrii. Generation of disease resistant cultivars by mutagenesis of susceptibility (S) genes via CRISPR/Cas9 is currently one of the most promising strategies to maintain favored traits while improving disease resistance. Previous studies have identified Arabidopsis DMR6 (Downy Mildew Resistance 6) as an S gene required for pathogenesis of the downy mildew-causing oomycete pathogen Hyaloperonospora arabidopsidis. In this study, a sweet basil homolog of DMR6, designated ObDMR6, was identified in the popular sweet basil cultivar Genoveser and found to exist with a high copy number in the genome with polymorphisms among the variants. Two CRISPR/Cas9 constructs expressing one or two single guide RNAs (sgRNAs) targeting the conserved regions of ObDMR6 variants were generated and used to transform Genoveser via Agrobacterium-mediated transformation. 56 T0 lines were generated, and mutations of ObDMR6 were detected by analyzing the Sanger sequencing chromatograms of an ObDMR6 fragment using the Interference of CRISPR Edits (ICE) software. Among 54 lines containing mutations in the targeted sites, 13 had an indel percentage greater than 96% suggesting a near-complete knockout (KO) of ObDMR6. Three representative transgene-free lines with near-complete KO of ObDMR6 determined by ICE were identified in the T1 segregating populations derived from three independent T0 lines. The mutations were further confirmed using amplicon deep sequencing. Disease assays conducted on T2 seedlings of the above T1 lines showed a reduction in production of sporangia by 61–68% compared to the wild-type plants and 69–93% reduction in relative pathogen biomass determined by quantitative PCR (qPCR). This study not only has generated transgene-free sweet basil varieties with improved downy mildew resistance, but also contributed to our understanding of the molecular interactions of sweet basil-P. belbahrii.

2021 ◽  
Vol 3 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Yee Chen Low ◽  
Michael A. Lawton ◽  
James E. Simon ◽  
Rong Di

Sweet basil (Ocimum basilicum L.) downy mildew disease (DM) caused by Peronospora belbahrii is a worldwide threat to the basil industry due to the lack of natural genetic resistance in sweet basil germplasm collections. In this study, we used CRISPR-gene editing to modify the sweet basil DM susceptibility gene homoserine kinase (ObHSK). Gene-edited plants challenged with P. belbahrii displayed a significantly reduced susceptibility to DM, based on phenotypic disease indices and on in planta pathogen load. These results suggest that ObHSK plays a role in conditioning DM susceptibility, similar to that observed for the AtHSK gene in Arabidopsis. These results demonstrate the utility of CRISPR-gene editing in enhancing DM resistance and contributing to sweet basil breeding programs.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gehendra Bhattarai ◽  
Wei Yang ◽  
Ainong Shi ◽  
Chunda Feng ◽  
Braham Dhillon ◽  
...  

Abstract Background Downy mildew, the most devastating disease of spinach (Spinacia oleracea L.), is caused by the oomycete Peronospora effusa [=P. farinosa f. sp. spinaciae]. The P. effusa shows race specificities to the resistant host and comprises 19 reported races and many novel isolates. Sixteen new P. effusa races were identified during the past three decades, and the new pathogen races are continually overcoming the genetic resistances used in commercial cultivars. A spinach breeding population derived from the cross between cultivars Whale and Lazio was inoculated with P. effusa race 16 in an environment-controlled facility; disease response was recorded and genotyped using genotyping by sequencing (GBS). The main objective of this study was to identify resistance-associated single nucleotide polymorphism (SNP) markers from the cultivar Whale against the P. effusa race 16. Results Association analysis conducted using GBS markers identified six significant SNPs (S3_658,306, S3_692697, S3_1050601, S3_1227787, S3_1227802, S3_1231197). The downy mildew resistance locus from cultivar Whale was mapped to a 0.57 Mb region on chromosome 3, including four disease resistance candidate genes (Spo12736, Spo12784, Spo12908, and Spo12821) within 2.69–11.28 Kb of the peak SNP. Conclusions Genomewide association analysis approach was used to map the P. effusa race 16 resistance loci and identify associated SNP markers and the candidate genes. The results from this study could be valuable in understanding the genetic basis of downy mildew resistance, and the SNP marker will be useful in spinach breeding to select resistant lines.


Genetics ◽  
1994 ◽  
Vol 137 (3) ◽  
pp. 867-874
Author(s):  
P A Okubara ◽  
P A Anderson ◽  
O E Ochoa ◽  
R W Michelmore

Abstract As part of our investigation of disease resistance in lettuce, we generated mutants that have lost resistance to Bremia lactucae, the casual fungus of downy mildew. Using a rapid and reliable screen, we identified 16 distinct mutants of Latuca sativa that have lost activity of one of four different downy mildew resistance genes (Dm). In all mutants, only a single Dm specificity was affected. Genetic analysis indicated that the lesions segregated as single, recessive mutations at the Dm loci. Dm3 was inactivated in nine of the mutants. One of five Dm 1 mutants was selected from a population of untreated seeds and therefore carried a spontaneous mutation. All other Dm1, Dm3, Dm5/8 and Dm7 mutants were derived from gamma- or fast neutron-irradiated seed. In two separate Dm 1 mutants and in each of the eight Dm3 mutants analyzed, at least one closely linked molecular marker was absent. Also, high molecular weight genomic DNA fragments that hybridized to a tightly linked molecular marker in wild type were either missing entirely or were truncated in two of the Dm3 mutants, providing additional evidence that deletions had occurred in these mutants. Absence of mutations at loci epistatic to the Dm genes suggested that such loci were either members of multigene families, were critical for plant survival, or encoded components of duplicated pathways for resistance; alternatively, the genes determining downy mildew resistance might be limited to the Dm loci.


2003 ◽  
pp. 451-456 ◽  
Author(s):  
Didier Merdinoglu ◽  
Sabine Wiedeman-Merdinoglu ◽  
Pascale Coste ◽  
Vincent Dumas ◽  
Stephanie Haetty ◽  
...  

2021 ◽  
Vol 78 (3) ◽  
pp. 239-243
Author(s):  
Roshni R. Samarth ◽  
Vidya Mane ◽  
Anuradha Upadhyay ◽  
Indu S. Sawant

PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e61228 ◽  
Author(s):  
Silvia Venuti ◽  
Dario Copetti ◽  
Serena Foria ◽  
Luigi Falginella ◽  
Sarolta Hoffmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document