significant snps
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 157)

H-INDEX

9
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Ernest Benaguev ◽  
Ivan Vladimirov ◽  
Olga Pavlova ◽  
Denis Bogomaz

Genotyping of single nucleotide polymorphisms (SNPs) is an important task in medicine, veterinary medicine and biology. Precise differentiation of SNPs can be challenging. Methods based onTaqman can lead to false positive results due to nonspecific annealing of the probe. The aim of this research was to develop a new approach for the accurate differentiation of SNPs based on real-time PCR with Taqmanprobes and their rivals.The rivals competed with the Taqmanprobes for annealing to the site. The rivals blocked the nonspecific allele so that the Taqmanprobe could not anneal to it. Thus,the Taqmanprobe only detected specific alleles.This approach madeit possible to fine-tune the diagnostic system by selecting the ratio of Taqmanprobes and rivals (in non-equimolar amounts too).The new approach was tested on several diagonally significant SNPs in veterinary medicine.Using Taqman probes and rival probes showed a significantly greater specificity and efficiency in the determination of both homozygotes and heterozygotes than when conventional systems based only on Taqmanwere used. Keywords: SNP, allele identification, real-time PCR, fluorescent dye


2022 ◽  
Vol 12 ◽  
Author(s):  
Yujie Ning ◽  
Minhan Hu ◽  
Jiayu Diao ◽  
Yi Gong ◽  
Ruitian Huang ◽  
...  

The mechanism of environmental factors in Kashin–Beck disease (KBD) remains unknown. We aimed to identify single nucleotide polymorphisms (SNPs) and protein alterations of selenium- and T-2 toxin–responsive genes to provide new evidence of chondrocytic damage in KBD. This study sampled the cubital venous blood of 258 subjects including 129 sex-matched KBD patients and 129 healthy controls for SNP detection. We applied an additive model, a dominant model, and a recessive model to identify significant SNPs. We then used the Comparative Toxicogenomics Database (CTD) to select selenium- and T-2 toxin–responsive genes with the candidate SNP loci. Finally, immunohistochemistry was applied to verify the protein expression of candidate genes in knee cartilage obtained from 15 subjects including 5 KBD, 5 osteoarthritis (OA), and 5 healthy controls. Forty-nine SNPs were genotyped in the current study. The C allele of rs6494629 was less frequent in KBD than in the controls (OR = 0.63, p = 0.011). Based on the CTD database, PPARG, ADAM12, IL6, SMAD3, and TIMP2 were identified to interact with selenium, sodium selenite, and T-2 toxin. KBD was found to be significantly associated with rs12629751 of PPARG (additive model: OR = 0.46, p = 0.012; dominant model: OR = 0.45, p = 0.049; recessive model: OR = 0.18, p = 0.018), rs1871054 of ADAM12 (dominant model: OR = 2.19, p = 0.022), rs1800796 of IL6 (dominant model: OR = 0.30, p = 0.003), rs6494629 of SMAD3 (additive model: OR = 0.65, p = 0.019; dominant model: OR = 0.52, p = 0.012), and rs4789936 of TIMP2 (recessive model: OR = 5.90, p = 0.024). Immunohistochemistry verified significantly upregulated PPARG, ADAM12, SMAD3, and TIMP2 in KBD compared with OA and normal controls (p < 0.05). Genetic polymorphisms of PPARG, ADAM12, SMAD3, and TIMP2 may contribute to the risk of KBD. These genes could promote the pathogenesis of KBD by disturbing ECM homeostasis.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Markus Scholz ◽  
Katrin Horn ◽  
Janne Pott ◽  
Arnd Gross ◽  
Marcus E. Kleber ◽  
...  

AbstractPhytosterol serum concentrations are under tight genetic control. The relationship between phytosterols and coronary artery disease (CAD) is controversially discussed. We perform a genome-wide meta-analysis of 32 phytosterol traits reflecting resorption, cholesterol synthesis and esterification in six studies with up to 9758 subjects and detect ten independent genome-wide significant SNPs at seven genomic loci. We confirm previously established associations at ABCG5/8 and ABO and demonstrate an extended locus heterogeneity at ABCG5/8 with different functional mechanisms. New loci comprise HMGCR, NPC1L1, PNLIPRP2, SCARB1 and APOE. Based on these results, we perform Mendelian Randomization analyses (MR) revealing a risk-increasing causal relationship of sitosterol serum concentrations and CAD, which is partly mediated by cholesterol. Here we report that phytosterols are polygenic traits. MR add evidence of both, direct and indirect causal effects of sitosterol on CAD.


Author(s):  
Yoland Savriama ◽  
Diethard Tautz

Abstract Various advances in 3D automatic phenotyping and landmark-based geometric morphometric methods have been made. While it is generally accepted that automatic landmarking compromises the capture of the biological variation, no studies have directly tested the actual impact of such landmarking approaches in analyses requiring a large number of specimens and for which the precision of phenotyping is crucial to extract an actual biological signal adequately. Here, we use a recently developed 3D atlas-based automatic landmarking method to test its accuracy in detecting QTLs associated with craniofacial development of the house mouse skull and lower jaws for a large number of specimens (circa 700) that were previously phenotyped via a semi-automatic landmarking method complemented with manual adjustment. We compare both landmarking methods with univariate and multivariate mapping of the skull and the lower jaws. We find that most significant SNPs and QTLs are not recovered based on the data derived from the automatic landmarking method. Our results thus confirm the notion that information is lost in the automated landmarking procedure although somewhat dependent on the analyzed structure. The automatic method seems to capture certain types of structures slightly better, such as lower jaws whose shape is almost entirely summarized by its outline and could be assimilated as a 2D flat object. By contrast, the more apparent 3D features exhibited by a structure such as the skull are not adequately captured by the automatic method. We conclude that using 3D atlas-based automatic landmarking methods requires careful consideration of the experimental question.


Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 49
Author(s):  
Samathmika Ravi ◽  
Mahdi Hassani ◽  
Bahram Heidari ◽  
Saptarathi Deb ◽  
Elena Orsini ◽  
...  

Rhizoctonia solani, causing Rhizoctonia crown and root rot, is a major risk to sugar beet (Beta vulgaris L.) cultivation. The development of resistant varieties accelerated by marker-assisted selection is a priority of breeding programs. We report the identification of a single-nucleotide polymorphism (SNP) marker linked to Rhizoctonia resistance using restriction site-associated DNA (RAD) sequencing of two geographically discrete sets of plant materials with different degrees of resistance/susceptibility to enable a wider selection of superior genotypes. The variant calling pipeline utilized SAMtools for variant calling and the resulting raw SNPs from RAD sequencing (15,988 and 22,439 SNPs) were able to explain 13.40% and 25.45% of the phenotypic variation in the two sets of material from different sources of origin, respectively. An association analysis was carried out independently on both the datasets and mutually occurring significant SNPs were filtered depending on their contribution to the phenotype using principal component analysis (PCA) biplots. To provide a ready-to-use marker for the breeding community, a systematic molecular validation of significant SNPs distributed across the genome was undertaken to combine high-resolution melting, Sanger sequencing, and rhAmp SNP genotyping. We report that RsBv1 located on Chromosome 6 (9000093 bp) is significantly associated with Rhizoctonia resistance (p < 0.01) and able to explain 10% of the phenotypic disease variance. The related SNP assay is thus ready for marker-assisted selection in sugar beet breeding for Rhizoctonia resistance.


2021 ◽  
Author(s):  
Jayanta Roy ◽  
Luis E. del Río Mendoza ◽  
Nonoy Bandillo ◽  
Phillip E. McClean ◽  
Mukhlesur Rahman

Abstract The lack of complete host resistance and a complex resistance inheritance nature between rapeseed/canola and Sclerotinia sclerotiorum often limits the development of functional molecular markers that enable breeding for sclerotinia stem rot (SSR) resistance. However, genomics-assisted selection has the potential to accelerate the breeding for SSR resistance. Therefore, genome-wide association (GWA) mapping and genomic prediction (GP) was performed using a diverse panel of 337 rapeseed/canola genotypes. Three-weeks old seedlings were screened using the petiole inoculation technique (PIT). Days to wilt (DW) up to 2 weeks and lesion phenotypes (LP) at 3, 4, and 7 days post inoculation (dpi) were recorded. A strong correlation (r = -0.94) between DW and LP_4dpi implied that a single time point scoring at four days could be used as a proxy trait. GWA analyses using single-locus (SL) and multi-locus (ML) models identified a total of 35, and 219 significantly associated SNPs, respectively. Out of these, seventy-one SNPs were identified by a combination of the SL model and any of the ML models, at least two ML models, or two traits. These SNPs explained 1.4-13.3% of the phenotypic variance, and considered as significant, could be associated with SSR resistance. Eighty-one candidate genes with a function in disease resistance were associated with the significant SNPs. Six GP models resulted in moderate to high (0.45-0.68) predictive ability depending on SSR resistance traits. The resistant genotypes and significant SNPs will serve as valuable resources for future SSR resistance breeding. Our results also highlight the potential of genomic selection to improve rapeseed/canola breeding for SSR resistance.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259939
Author(s):  
Yaiza Forcada ◽  
Mike Boursnell ◽  
Brian Catchpole ◽  
David B. Church

Diabetes mellitus (DM) is a common feline endocrinopathy, which is similar to human type 2 diabetes (T2DM) in terms of its pathophysiology. T2DM occurs due to peripheral insulin resistance and/or β-cell dysfunction. Several studies have identified genetic and environmental factors that contribute to susceptibility to human T2DM. In cats, environmental factors such as obesity and physical inactivity have been linked with DM, although to date, the only genetic association that has been demonstrated is with a polymorphism in the feline MC4R gene. The aim of this study was to perform a genome-wide association study (GWAS) to identify polymorphisms associated with feline DM. Illumina Infinium 63k iSelect DNA arrays were used to analyse genomic DNA samples from 200 diabetic domestic shorthair cats and 399 non-diabetic control cats. Data was analysed using PLINK whole genome data analysis toolset. A linear model analysis, EMMAX, was done to test for population structure and HAPLOVIEW was used to identify haplotype blocks surrounding the significant SNPs to assist with candidate gene nomination. A total of 47,497 SNPs were available for analysis. Four SNPs were identified with genome-wide significance: chrA2.4150731 (praw = 9.94 x10-8); chrUn17.115508 (praw = 6.51 x10-8); chrUn17.394136 (praw = 2.53 x10-8); chrUn17.314128 (praw = 2.53 x10-8) as being associated with DM. The first SNP is located within chromosome A2, less than 4kb upstream of the dipeptidyl-peptidase-9 (DPP9) gene, a peptidase involved in incretin inactivation. The remaining three SNPs are located within a haplotype block towards the end of chromosome A3; within this region, genes of interest include TMEM18 and ACP1, both previously associated with T2DM. This study indicates a polygenic component to susceptibility to DM in cats and has highlighted several loci and candidate genes worthy of further investigation.


2021 ◽  
Author(s):  
Gregory Vogel ◽  
Garrett Giles ◽  
Kelly R. Robbins ◽  
Michael A. Gore ◽  
Christine D. Smart

ABSTRACTThe development of pepper cultivars with durable resistance to the oomycete Phytophthora capsici has been challenging due to differential interactions between the species that allow certain pathogen isolates to cause disease on otherwise resistant host genotypes. Currently, little is known about the pathogen genes that are involved in these interactions. To investigate the genetic basis of P. capsici virulence on individual pepper genotypes, we inoculated sixteen pepper accessions – representing commercial varieties, sources of resistance, and host differentials – with 117 isolates of P. capsici, for a total of 1,864 host-pathogen combinations. Analysis of disease outcomes revealed a significant effect of inter-species genotype-by-genotype interactions, although these interactions were quantitative rather than qualitative in scale. Isolates were classified into five pathogen subpopulations, as determined by their genotypes at over 60,000 single-nucleotide polymorphisms (SNPs). While absolute virulence levels on certain pepper accessions significantly differed between subpopulations, a multivariate phenotype reflecting relative virulence levels on certain pepper genotypes compared to others showed the strongest association with pathogen subpopulation. A genome-wide association study (GWAS) identified four pathogen loci significantly associated with virulence, two of which colocalized with putative RXLR effector genes and another with a polygalacturonase gene cluster. All four loci appeared to represent broad-spectrum virulence genes, as significant SNPs demonstrated consistent effects regardless of the host genotype tested. Host genotype-specific virulence variants in P. capsici may be difficult to map via GWAS, perhaps controlled by many genes of small effect or by multiple alleles that have arisen independently at the same loci.


2021 ◽  
Author(s):  
Tiphaine Macé ◽  
Eliel Gonzalez-Garcia ◽  
Didier Foulquié ◽  
Fabien Carrière ◽  
Julien Pradel ◽  
...  

Among the adaptive capacities of animals, the management of energetic body reserves (BR) through the BR mobilization and accretion processes (BR dynamics, BRD) has become an increasingly valuable attribute for livestock sustainability, allowing animals to cope with more variable environments. BRD has previously been reported to be heritable in ruminants. In the present study, we conducted genome-wide studies (GWAS) in sheep to determine genetic variants associated with BRD. BR levels and BR changes over time were obtained through body condition score measurements at eight physiological stages throughout each productive cycle in Romane ewes (n=1034) and were used as phenotypes for GWAS. After quality controls and imputation, 48,513 single nucleotide polymorphisms (SNP) were included in the GWAS. Among the QTLs identified, a major QTL associated with BR levels during pregnancy and lactation was identified on chromosome 1. In this region, several significant SNPs mapped to the leptin receptor gene (LEPR), among which one SNP mapped to the coding sequence. The point mutation induces the p.P1019S substitution in the cytoplasmic domain, close to tyrosine phosphorylation sites. The frequency of the SNP associated with increased BR levels was 32%, and the LEPR genotype explained up to 5% of the variance of the trait. These results provide strong evidence for involvement of LEPR in the regulation of BRD in sheep and highlight it as a major candidate for improving adaptive capacities.


Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1174
Author(s):  
San Mar Lar ◽  
Jeonghwan Seo ◽  
Seong-Gyu Jang ◽  
Hongjia Zhang ◽  
Ah-Rim Lee ◽  
...  

Salinity is one of the major constraints causing soil problems and is considered a limitation to increased rice production in rice-growing countries. This genome-wide association study (GWAS) experiment was conducted to understand the genetic basis of salt tolerance at the seedling stage in Korean rice. After 10 days of salt stress treatment, salt tolerance was evaluated with a standard evaluation system using a visual salt injury score. With 191 Korean landrace accessions and their genotypes, including 266,040 single-nucleotide polymorphisms (SNPs), using a KNU Axiom Oryza 580K Genotyping Array, GWAS was conducted to detect three QTLs with significant SNPs with a −log10(P) threshold of ≥3.66. The QTL of qSIS2, showed −log10(P) = 3.80 and the lead SNP explained 7.87% of total phenotypic variation. The QTL of qSIS4, showed −log10(P) = 4.05 and the lead SNP explained 10.53% of total phenotypic variation. The QTL of qSIS8 showed −log10(P) = 3.78 and the lead SNP explained 7.83% of total phenotypic variation. Among the annotated genes located in these three QTL regions, five genes were selected as candidates (Os04g0481600, Os04g0485300, Os04g0493000, Os04g0493300, and Os08g0390200) for salt tolerance in rice seedlings based on the gene expression database and their previously known functions.


Sign in / Sign up

Export Citation Format

Share Document