scholarly journals The effect of human mobility restrictions on the COVID-19 transmission network in China

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254403
Author(s):  
Tatsushi Oka ◽  
Wei Wei ◽  
Dan Zhu

Background COVID-19 poses a severe threat worldwide. This study analyzes its propagation and evaluates statistically the effect of mobility restriction policies on the spread of the disease. Methods We apply a variation of the stochastic Susceptible-Infectious-Recovered model to describe the temporal-spatial evolution of the disease across 33 provincial regions in China, where the disease was first identified. We employ Bayesian Markov Chain Monte-Carlo methods to estimate the model and to characterize a dynamic transmission network, which enables us to evaluate the effectiveness of various local and national policies. Results The spread of the disease in China was predominantly driven by community transmission within regions, which dropped substantially after local governments imposed various lockdown policies. Further, Hubei was only the epicenter of the early epidemic stage. Secondary epicenters, such as Beijing and Guangdong, had already become established by late January 2020. The transmission from these epicenters substantially declined following the introduction of mobility restrictions across regions. Conclusions The spatial transmission network is able to differentiate the effect of the local lockdown policies and the cross-region mobility restrictions. We conclude that both are important policy tools for curbing the disease transmission. The coordination between central and local governments is important in suppressing the spread of infectious diseases.

2019 ◽  
Vol 7 (3) ◽  
pp. 91-98
Author(s):  
Atefeh Sadat Mirarabshahi ◽  
Mehrdad Kargari

Introduction: One major problem in analyzing epidemic data is the lack of data and high dependency among the available data, which is due to the fact that the epidemic process is not directly observable. Methods: One method for epidemic data analysis to estimate the desired epidemic parameters, such as disease transmission rate and recovery rate, is data intensification. In this method, unknown quantities are considered as additional parameters of the model and are extracted using other parameters. The Markov Chain Monte Carlo algorithm is extensively used in this field. Results: The current study presents a Bayesian statistical analysis of influenza outbreak data using Markov Chain Monte Carlo data intensification that is independent of probability approximation and provides a wider range of results than previous studies. A method for estimating the epidemic parameters has been presented in a way that the problem of uncertainty regarding the modeling of dynamic biological systems can be solved. The proposed method is then applied to fit an SIR-like flu transmission model to data from 19 years leading up to the seventh week of the 2017 incidence of influenza. Conclusion: The proposed method showed an improvement in estimating the values of all the parameters considered in the study. The results of this study showed that the distributions are significant and the error ranges are real.


1994 ◽  
Author(s):  
Alan E. Gelfand ◽  
Sujit K. Sahu

Sign in / Sign up

Export Citation Format

Share Document