scholarly journals 3D modelling of drug-coated balloons for the treatment of calcified superficial femoral arteries

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0256783
Author(s):  
Monika Colombo ◽  
Anna Corti ◽  
Scott Berceli ◽  
Francesco Migliavacca ◽  
Sean McGinty ◽  
...  

Background/Objectives Drug-coated balloon therapy for diseased superficial femoral arteries remains controversial. Despite its clinical relevance, only a few computational studies based on simplistic two-dimensional models have been proposed to investigate this endovascular therapy to date. This work addresses the aforementioned limitation by analyzing the drug transport and kinetics occurring during drug-coated balloon deployment in a three-dimensional geometry. Methods An idealized three-dimensional model of a superficial femoral artery presenting with a calcific plaque and treated with a drug-coated balloon was created to perform transient mass transport simulations. To account for the transport of drug (i.e. paclitaxel) released by the device, a diffusion-reaction equation was implemented by describing the drug bound to specific intracellular receptors through a non-linear, reversible reaction. The following features concerning procedural aspects, pathologies and modelling assumptions were investigated: (i) balloon application time (60–180 seconds); (ii) vessel wall composition (healthy vs. calcified wall); (iii) sequential balloon application; and (iv) drug wash-out by the blood stream vs. coating retention, modeled as exponential decay. Results The balloon inflation time impacted both the free and specifically-bound drug concentrations in the vessel wall. The vessel wall composition highly affected the drug concentrations. In particular, the specifically-bound drug concentration was four orders of magnitude lower in the calcific compared with healthy vessel wall portions, primarily as a result of reduced drug diffusion. The sequential application of two drug-coated balloons led to modest differences (~15%) in drug concentration immediately after inflation, which became negligible within 10 minutes. The retention of the balloon coating increased the drug concentration in the vessel wall fourfold. Conclusions The overall findings suggest that paclitaxel kinetics may be affected not only by the geometrical and compositional features of the vessel treated with the drug-coated balloon, but also by balloon design characteristics and procedural aspects that should be carefully considered.

2008 ◽  
Vol 5 (26) ◽  
pp. 1067-1075 ◽  
Author(s):  
G Coppola ◽  
C Caro

Arterial geometry is commonly non-planar and associated with swirling blood flow. In this study, we examine the effect of arterial three-dimensionality on the distribution of wall shear stress (WSS) and the mass transfer of oxygen from the blood to the vessel wall in a U-bend, by modelling the blood vessels as either cylindrical or helical conduits. The results show that under physiological flow conditions, three-dimensionality can reduce both the range and extent of low WSS regions and substantially increase oxygen flux through the walls. The Sherwood number and WSS distributions between the three-dimensional helical model and a human coronary artery show remarkable qualitative agreement, implying that coronary arteries may potentially be described with a relatively simple idealized three-dimensional model, characterized by a small number of well-defined geometric parameters. The flow pattern downstream of a planar bend results in separation of the Sh number and WSS effects, a finding that implies means of investigating them individually.


2021 ◽  
Author(s):  
Anahid Khoobyar ◽  
Anita Penkova ◽  
Mark S. Humayun ◽  
Satwindar Singh Sadhal

Abstract The purpose of this study is to investigate the effect of partial liquefaction (due to ageing) of the vitreous humor on the transport of ocular drugs. In our model, the gel part of the vitreous is treated as a Darcy-type porous medium. A spherical region within the porous part of vitreous is in a liquid state which, for computational purposes, is also treated as a porous medium but with a much higher permeability. Using the finite element method, a time-dependent, three-dimensional model has been developed to computationally simulate (using the Petrov-Galerkin method) the transport of intravitreally injected macromolecules where both convection and diffusion are present. From a fluid physics and transport phenomena perspective, the results show many interesting features. For pressure-driven flow across the vitreous, the flow streamlines converge into the liquefied region as the flow seeks the fastest path of travel. Furthermore, as expected, with increased level of liquefaction, the overall flow rate increases for a given pressure drop. We have quantified this effect for various geometrical considerations. The flow convergence into the liquefied region has important implication for convective transport. One effect is the clear diversion of the drug as it reaches the liquefied region. In some instances, the entry point of the drug in the retinal region gets slightly shifted due to liquefaction. While the model has many approximations and assumptions, the focus is illustrating the effect of liquefaction as one of the building blocks towards a fully comprehensive model.


2004 ◽  
Vol 10 (1_suppl) ◽  
pp. 155-160 ◽  
Author(s):  
N. Kobayashi ◽  
S. Miyachi ◽  
T. Okamoto ◽  
K. Hattori ◽  
T. Kojima ◽  
...  

Using a supercomputer, the authors studied the effect of vessel wall pulsation on flow dynamics with a three-dimensional model simulating both a rigid and pulsatile style. The design of the aneurysm models was set with a 5 mm dome diameter and a 1 or 3 mm orifice size to simulate a carotid-ophthalmic aneurysm. Flow dynamics were analyzed according to flow pattern, wall pressure and wall shear stress. The flow pattern in the aneurysm sac showed the great difference between rigid and pulsatile models particularly in the small-neck aneurysm model. The arterial wall tended to be exposed to a higher pressure peak in the pulsatile model than in the rigid one, especially at its bifurcation and curved regions. Sites of shear stress peak were found on the aneurysmal dome as well as at the distal end of the orifice in both rigid and pulsatile models. The effects of vessel-wall pulsation should be considered whenever evaluating conditions in and around an aneurysm.


Skull Base ◽  
2008 ◽  
Vol 18 (S 01) ◽  
Author(s):  
Akio Morita ◽  
Toshikazu Kimura ◽  
Shigeo Sora ◽  
Kengo Nishimura ◽  
Hisayuki Sugiyama ◽  
...  

2020 ◽  
pp. 1-12
Author(s):  
Wu Xin ◽  
Qiu Daping

The inheritance and innovation of ancient architecture decoration art is an important way for the development of the construction industry. The data process of traditional ancient architecture decoration art is relatively backward, which leads to the obvious distortion of the digitalization of ancient architecture decoration art. In order to improve the digital effect of ancient architecture decoration art, based on neural network, this paper combines the image features to construct a neural network-based ancient architecture decoration art data system model, and graphically expresses the static construction mode and dynamic construction process of the architecture group. Based on this, three-dimensional model reconstruction and scene simulation experiments of architecture groups are realized. In order to verify the performance effect of the system proposed in this paper, it is verified through simulation and performance testing, and data visualization is performed through statistical methods. The result of the study shows that the digitalization effect of the ancient architecture decoration art proposed in this paper is good.


Sign in / Sign up

Export Citation Format

Share Document