scholarly journals Risk of heavy metals accumulation in soil and wheat grains with waste water irrigation under different NPK levels in alkaline calcareous soil

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258724
Author(s):  
Maria Mussarat ◽  
Waqar Ahmad Jamal ◽  
Dost Muhammad ◽  
Manzoor Ahmad ◽  
Abida Saleem ◽  
...  

A field study was conducted on the reuse of wastewater from Mardan city to evaluate its risk of contaminating soil and wheat grains at different NPK levels. Three irrigation sources i.e. waste water (WW), canal water (CW) and alternate waste + canal water (WW+CW) were applied to wheat (cv Atta Habib 2010) grown at 0, 50, 75 and 100% NPK levels of 120:90:60 kg N:P2O5:K2O ha-1 at Palatoo Research Farm, Amir Muhammad Khan Campus, Mardan during 2015.The results showed higher grain and biomass yields in WW irrigated plots as compared to CW at NPK levels up to 50% of recommending dose revealing supplementing nutrient requirements in deficient conditions. However, irrigation of WW at higher NPK levels especially at or beyond 75% of recommended dose tended to reduce the crop yield that could be associated with heavy metals toxicity and nutritional imbalances. The use of WW substantially increased AB-DTPA extractable Zn, Mn, Pb, Ni and Cd indicating a potential threat to soil contamination. Similarly, WW irrigated wheat had higher concentrations of these heavy metals as compared to CW which limits its use for production purposes without any remediation measures. The alternate use of CW and WW as revealed by its comparative lower contamination in soil and wheat than sole WW could be one of the possible solutions and may increase the time required for threshold soil contamination.

Author(s):  
A. Shamsoddini ◽  
S. Raval ◽  
R. Taplin

Abandoned mine sites pose the potential threat of the heavy metal pollution spread through streams and via runoff leading to contamination of soil and water in their surrounding areas. Regular monitoring of these areas is critical to minimise impacts on water resources, flora and fauna. Conventional ground based monitoring is expensive and sometimes impractical; spectroscopic methods have been emerged as a reliable alternative for this purpose. In this study, the capabilities of the spectroscopy method were examined for modelling soil contamination from around the abandoned silver-zinc mine located at Yerranderie, NSW Australia. The diagnostic characteristics of the original reflectance data were compared with models derived from first and second derivatives of the reflectance data. The results indicate that the models derived from the first derivative of the reflectance data estimate heavy metals significantly more accurately than model derived from the original reflectance. It was also found in this study that there is no need to use second derivative for modelling heavy metal soil contamination. Finally, the results indicate that estimates were of greater accuracy for arsenic and lead compared to other heavy metals, while the estimation for silver was found to be the most erroneous.


2015 ◽  
Vol 3 (2) ◽  
pp. 240-249
Author(s):  
Khalida Hassan ◽  
Rezan Mosa ◽  
Shayma Rajab
Keyword(s):  

2015 ◽  
Vol 2 (2) ◽  
Author(s):  
Wahyu Wilopo ◽  
Septiawan Nur Haryono ◽  
Doni Prakasa Eka Putra ◽  
I Wayan Warmada ◽  
Tsuyoshi Hirajima

Development of indusrialization and urbanization not only increase economic growth but also contribute to the environmental degradation, especially contamination of heavy metals in water. In other side, there are many geological materials have capability to immobilize heavy metals. Therefore, the objective of this research is to know the maximum capacity of natural zeolite from Trembono area, Gunung Kidul regency to immobilize copper (Cu2+) from water and to understand their mechanism. This experiment was carry out by a batch test. The result showed that the maximum capacity of zeolite to immobilize Cu (qmax) is 63,69 mmolCu/kg Zeolite according to Langmuir adsorption equilibrium model. In addition, the capability to immobilize Cu will increases due to decreasing the grain size. The result of this research can be used as an alternative for waste water treatment, especially Cu. Keywords: Removal, copper (Cu2+), natural zeolite, Langmuir isotherm


Author(s):  
Kadriye Taşpınar ◽  
Özgür Ateş ◽  
Melis Özge Pınar ◽  
Gülser Yalçın ◽  
Fatih Kızılaslan ◽  
...  

2012 ◽  
Vol 550-553 ◽  
pp. 2121-2124 ◽  
Author(s):  
Ling Ling Luo ◽  
Xing Xing Gu ◽  
Jun Wu ◽  
Shu Xian Zhong ◽  
Jian Rong Chen

Graphene for its unique physical structure, excellent mechanical, electrical and physical properties has been widely applied in nanoelectronics, microelectronics, energy storage material, composite materials and so on. In recent years, many researchers found graphene have outstanding adsorption capacity of contaminants in aqueous solution due to its high specific surface area. This paper summarized the graphene, graphene oxide and functionalized graphene removing various heavy metals in waste water.


2021 ◽  
Vol 143 (1) ◽  
pp. 110-119
Author(s):  
R.A. Alybaeva ◽  
◽  
N.Sh. Akhambayeva ◽  
Z.A. Inelova ◽  
S.D. Atabayeva ◽  
...  

Author(s):  
Eshetu Shifaw

Background. The concentrations of heavy metals in soil and potential risks to the environment and public health are receiving increased attention in China. Objectives. The objective of this paper is to review and analyze heavy metals soil contamination in urban and agricultural areas and on a national scale in China. Methods. Initially, data on soil heavy metals concentration levels were gathered from previous studies and narratively analyzed. A further statistical analysis was performed using the geo-accumulation index (Igeo), Nemerow integrated pollution index (NIPI), mean, standard deviation (SD), skewness and kurtosis. Pollution levels were calculated and tabulated to illustrate overall spatial variations. In addition, pollution sources, remedial measures and impact of soil contamination as well as limitations are addressed. Results. The concentration level of heavy metals was above the natural background level in most areas of China. The problem was more prevalent in urban soils than agricultural soils. At the national level, the soil in most of the southern provinces and Beijing were heavily polluted. Even though the pollution condition based on Igeo was promising, the Nemerow integrated pollution level was the most worrisome. The soils in about 53% of the provinces were moderately to heavily polluted (NIPI>2). The effects were noticed in terms of both public and ecological health risks. The major sources were waste gas, wastewater, and hazardous residuals from factories and agricultural inputs such as pesticides. Efforts have been made to reduce the concentrations and health risks of heavy metals, including policy interventions, controlling contamination sources, reducing the phytoavailability of heavy metals, selecting and rearing of grain cultivars with low risk of contamination, paddy water and fertilizer management, land use changes, phytoremediation and engineering techniques. Conclusions. China is experiencing rapid economic and technological advancements. This increases the risk of heavy metals contamination of soil. If serious attention is not paid to this problem, soil toxicity and biological accumulation will continue to threaten the sustainability of China's development. Competing Interests. The authors declare no competing financial interests


Sign in / Sign up

Export Citation Format

Share Document