canal water
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 56)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 930 (1) ◽  
pp. 012047
Author(s):  
F S S Rahajeng ◽  
R Jayadi ◽  
A Maas

Abstract Unit Tamban is a fork system of lowland irrigation areas in Kapuas District. It has three primary canals, and each of them has a settling pond at the end. Most of the 3,506 ha planting area still apply once a year cropping patterns. A quick assessment based on field observations is carried out to determine the existing problems, including water management, water quality, and soil quality. The problem in the water management system is silting in the primary and secondary canals. The settling pond at the primary canal was no longer functioning, and it makes the silting worse because the water flow became uncontrolled. Water quality is measured with pH and TDS, the average pH at canal water was 4,22, and TDS was 71 mg/l. The soil type is mainly acid sulphate with pyritic materials, mostly 70 cm below the surface. Increasing cropping patterns twice a year requires improving the water circulations and increasing the soil pH higher than five. The problem in the secondary canal is expected to solve by changing the flow pattern from two way to 1-way flow is needed to avoid dead spots of water so that the leaching processes can work well.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258724
Author(s):  
Maria Mussarat ◽  
Waqar Ahmad Jamal ◽  
Dost Muhammad ◽  
Manzoor Ahmad ◽  
Abida Saleem ◽  
...  

A field study was conducted on the reuse of wastewater from Mardan city to evaluate its risk of contaminating soil and wheat grains at different NPK levels. Three irrigation sources i.e. waste water (WW), canal water (CW) and alternate waste + canal water (WW+CW) were applied to wheat (cv Atta Habib 2010) grown at 0, 50, 75 and 100% NPK levels of 120:90:60 kg N:P2O5:K2O ha-1 at Palatoo Research Farm, Amir Muhammad Khan Campus, Mardan during 2015.The results showed higher grain and biomass yields in WW irrigated plots as compared to CW at NPK levels up to 50% of recommending dose revealing supplementing nutrient requirements in deficient conditions. However, irrigation of WW at higher NPK levels especially at or beyond 75% of recommended dose tended to reduce the crop yield that could be associated with heavy metals toxicity and nutritional imbalances. The use of WW substantially increased AB-DTPA extractable Zn, Mn, Pb, Ni and Cd indicating a potential threat to soil contamination. Similarly, WW irrigated wheat had higher concentrations of these heavy metals as compared to CW which limits its use for production purposes without any remediation measures. The alternate use of CW and WW as revealed by its comparative lower contamination in soil and wheat than sole WW could be one of the possible solutions and may increase the time required for threshold soil contamination.


2021 ◽  
Vol 117 (3) ◽  
pp. 1
Author(s):  
Khalil AHMED ◽  
Amar Iqbal SAQIB ◽  
Ghulam QADIR ◽  
Muhammad Qaisar NAWAZ ◽  
Muhammad RIZWAN ◽  
...  

<p>A pot study was conducted to develop reasonable irrigation scheduling methods for rice-wheat crop rotation by conjunctive use of low-quality brackish water and good quality canal water. Treatments tested were; T<sub>1</sub> (canal water), T<sub>2</sub> (brackish water), T<sub>3 </sub>(brackish water for rice and canal water for wheat), T<sub>4</sub> (last two irrigations to rice, and initial two irrigations to wheat with canal water), T<sub>5</sub> (last two irrigations to rice but two initial and one last irrigation to wheat with canal water). Results revealed that irrigation with canal water resulted in the maximum mean biomass and grain yield of rice and wheat crops followed by cyclic use of brackish and canal water. While continuous irrigation with brackish water resulted the lowest mean biomass and grain yield. The different modes of irrigations also influenced chemical properties of soil, brackish water adversely affected the soil properties, and maximum pH of soil saturated paste (pH<sub>s</sub>), electrical conductivity of soil extract (EC<sub>e</sub>) and sodium adsorption ratio (SAR) were recorded where brackish water was used continuously. Therefore, it was concluded that when water is valuable and freshwater resources are limited, cyclic use of the canal and brackish water is also profitable with marginal effect on biomass and grain yield and proves least detrimental for soil health.</p>


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Alyaa M. S. Abdel Khalik ◽  
Karam F. Moussa ◽  
Mohamed K. Abdel- Fattah ◽  
Ahmed I. Abdo

The study aims to study the effect of irrigation water characteristics from different sources (i.e., fresh water and agricultural drainage water) on some chemical properties of the soil (soil pH, soil electrical conductivity “ECe”, sodium adsorption ratio “SAR”, cations exchange capacity “CEC” and exchangeable sodium percentage “ESP”).Therefore, water samples were collected from 15 different sites of the Bahr Mouise canal and likewise from the Bahr El-Baqar drain, which are located in Sharkia Governorate, Egypt. In parallel with water sampling, soil samples were taken from the same areas that are irrigated with these waters (i.e., Bahr Mouise canal and Bahr ElBaqar drain). Soil and water samples were analyzed.The results indicated that the irrigation water sources (i.e., Bahr Mouise canal and Bahr El-Baqar drain) were affected on the different of the chemical characteristics of soil. The pH values of the soil that irrigated with Bahr Mouise canal water were ranged from 7.62 to 8.35 with an average 8.01±0.21, while pH values of the soil that irrigated with Bahr El-Baqar drain water were ranged from 7.99 to 8.56 with an average 8.27±0.16. The EC values of the soil that irrigated with Bahr Mouise canal water were ranged from 0.61 to 3.86 dS/m with an average 1.23±1.00 dS/m, while ECe values of the soil that irrigated with Bahr El-Baqar drain water were ranged from 1.82 to 2.67dS/m with an average 2.35±0.30 dS/m. Regarding sodium adsorption ratio (SAR), the SAR values average in soil that irrigated with Bahr Mouise canal (ranged from 0.84 to 7.65 mmolc/l with an average 2.12±1.91 mmolc/l) were less than the SAR values average in soil that irrigated with Bahr El-Baqar drain (ranged from 2.49 to 3.79 mmolc/l with an average 3.27±0.38 mmolc/l) with statistically significant differences between them (p-value < 0.05). In addition, the results showed that the CEC values in the soil that irrigated with Bahr El-Baqar drain (ranged from 49.66 to 71.37 cmolc/kg soil with an avera


2021 ◽  
Vol 7 (10) ◽  
pp. 1731-1740
Author(s):  
Naeem Shah Bukhari Syed ◽  
Zhao Shuqi ◽  
Muhammad Munir Babar ◽  
Rajesh Kumar Soothar

Irrigation canals are generally made through porous soil formations, since the soil is loose porous media – a huge amount of canal water is lost to conveyance losses. The situation becomes direr when these losses result in non-beneficial losses. The Sindh province of Pakistan has more than 70% saline groundwater, conveyance losses to such areas in the province not only become unusable but also creates water management problems. Perhaps the only cost-effective way to address these losses is canal lining. The present study was conducted in the command area of Belharo distributary, Sindh, Pakistan with an aim to determine the extent of losses from the tertiary irrigated network as these water channels are less considered in the literature with regards of conveyance losses. Using water balance method, conveyance efficiency and conveyance losses at 30% lined and 50 and 75% unlined length of the watercourses was observed. The results revealed that the tertiary irrigation channels face an average of 43% conveyance losses and major proportion of these losses is lost to non-beneficial losses from the study area. The study further suggests 75% lining of watercourses in order to minimize non-beneficial losses. This study also infers that with the use of geo-membrane lining, sizeable amount of fresh water can be saved. Doi: 10.28991/cej-2021-03091756 Full Text: PDF


2021 ◽  
Vol 3 ◽  
Author(s):  
Alexandra Belias ◽  
Natalie Brassill ◽  
Sherry Roof ◽  
Channah Rock ◽  
Martin Wiedmann ◽  
...  

Pathogen contamination of agricultural water has been identified as a probable cause of recalls and outbreaks. However, variability in pathogen presence and concentration complicates the reliable identification of agricultural water at elevated risk of pathogen presence. In this study, we collected data on the presence of Salmonella and genetic markers for enterohemorrhagic E. coli (EHEC; PCR-based detection of stx and eaeA) in southwestern US canal water, which is used as agricultural water for produce. We developed and assessed the accuracy of models to predict the likelihood of pathogen contamination of southwestern US canal water. Based on 169 samples from 60 surface water canals (each sampled 1–3 times), 36% (60/169) and 21% (36/169) of samples were positive for Salmonella presence and EHEC markers, respectively. Water quality parameters (e.g., generic E. coli level, turbidity), surrounding land-use (e.g., natural cover, cropland cover), weather conditions (e.g., temperature), and sampling site characteristics (e.g., canal type) data were collected as predictor variables. Separate conditional forest models were trained for Salmonella isolation and EHEC marker detection, and cross-validated to assess predictive performance. For Salmonella, turbidity, day of year, generic E. coli level, and % natural cover in a 500–1,000 ft (~150–300 m) buffer around the sampling site were the top 4 predictors identified by the conditional forest model. For EHEC markers, generic E. coli level, day of year, % natural cover in a 250–500 ft (~75–150 m) buffer, and % natural cover in a 500–1,000 ft (~150–300 m) buffer were the top 4 predictors. Predictive performance measures (e.g., area under the curve [AUC]) indicated predictive modeling shows potential as an alternative method for assessing the likelihood of pathogen presence in agricultural water. Secondary conditional forest models with generic E. coli level excluded as a predictor showed &lt; 0.01 difference in AUC as compared to the AUC values for the original models (i.e., with generic E. coli level included as a predictor) for both Salmonella (AUC = 0.84) and EHEC markers (AUC = 0.92). Our data suggests models that do not require the inclusion of microbiological data (e.g., indicator organism) show promise for real-time prediction of pathogen contamination of agricultural water (e.g., in surface water canals).


2021 ◽  
Vol 13 (16) ◽  
pp. 8695
Author(s):  
Naveed Ahmed ◽  
Haishen Lü ◽  
Shakeel Ahmed ◽  
Ghulam Nabi ◽  
Muhammad Abdul Wajid ◽  
...  

Sustainable management of canal water through optimum water allocation is the need of the modern world due to the rapid rise in water demand and climatic variations. The present research was conducted at the Chaj Doab, Indus Basin Irrigation System (IBIS) of Pakistan, using the WEAP (Water Evaluation and Planning) model. Six different scenarios were developed, and the results showed that the current available surface water is not sufficient to meet crop water demands. The Lower Jhelum Canal (LJC) command area is more sensitive to water scarcity than the Upper Jhelum Canal (UJC). The future (up to 2070) climate change scenarios for RCP 4.5 and 8.5 showed a decrease in catchment reliability up to 26.80 and 26.28% for UJC as well as 27.56 and 27.31% for LJC catchment, respectively. We concluded that scenario 3 (irrigation efficiency improvement through implementation of a high efficiency irrigation system, canal lining, reduction and replacement of high delta crops with low delta crops) was sufficient to reduce the canal water deficit in order to optimize canal water allocation. Improvement in the irrigation system and cropping area should be optimized for efficient canal water management.


2021 ◽  
Author(s):  
Pratap Chandra Moharana ◽  
R.K. Goyal ◽  
Deepesh Machiwal ◽  
C.B. Pandey

Abstract In the arid region of Rajasthan, India, it is very often a challenge to store rain/surface water for year-round use by human and livestock. The inhabitants of this desert area have developed several water storage structures, which they used to construct based on their indigenous knowledge of local terrain conditions. Recently, farmers living in the lower command areas of Indira Gandhi canal have constructed micro-farm water storage structures, called diggi, in their cropland. They store allocated canal water in diggi to timely utilize it as per irrigation requirements, and thus, done away with problems of deficit and untimely canal water supply. This impact assessment study, carried out in Poogal tehsil of Bikaner district, analyzed high-resolution satellite images of two years and used geographic information system to quantify diggi structures and studied the diggi-growth interactions with changing rainfall pattern as well as land use/land cover. Results showed that during 2018, about 3243 number of structures were constructed compared to 241 existed during 2004-05. The mean annual rainfall increased by 30% and crop area by 12772 ha during the same period that included 7.86% increase in irrigated and 2.98% in rainfed croplands. Thus, diggi based water management has been immensely helpful in the perspective of irrigated agriculture in the desert region.


2021 ◽  
Author(s):  
Lu Zhang ◽  
Wei Yin ◽  
Chao Wang ◽  
Aijing Zhang ◽  
Hong Zhang ◽  
...  

Large water diversion projects are important constructions for reallocation of human-essential water resources. Deciphering microbiota dynamics and assembly mechanisms underlying canal water ecosystem services especially during long-distance diversion is the prerequisite for water quality monitoring, biohazard warning and sustainable management. Using a 1432-km canal of the South-to-North Water Diversion Projects as a model system, we answer three central questions: how bacterial and micro-eukaryotic communities spatio-temporally develop, how much ecological stochasticity contributes to microbiota assembly, and which immigrating populations better survive and navigate across the canal. We applied quantitative ribosomal RNA gene sequence analyses to investigate canal water microbial communities sampled over a year, as well as null model- and neutral model-based approaches to disentangle the microbiota assembly processes. Our results showed clear microbiota dynamics in community composition driven by seasonality more than geographic location, and seasonally dependent influence of environmental parameters. Overall, bacterial community was largely shaped by deterministic processes, whereas stochasticity dominated micro-eukaryotic community assembly. We defined a local growth factor (LGF) and demonstrated its innovative use to quantitatively infer microbial proliferation, unraveling taxonomically dependent population response to local environmental selection across canal sections. Using LGF as a quantitative indicator of immigrating capacities, we also found that most micro-eukaryotic populations (82%) from the source lake water sustained growth in the canal and better acclimated to the hydrodynamical water environment than bacteria (67%). Taxa inferred to largely propagate include Limnohabitans sp. and Cryptophyceae, potentially contributing to water auto-purification. Combined, our work poses first and unique insights into the microbiota assembly patterns and dynamics in the world's largest water diversion canal, providing important ecological knowledge for long-term sustainable water quality maintenance in such a giant engineered system.


Sign in / Sign up

Export Citation Format

Share Document