scholarly journals Protein conformational transitions explored by a morphing approach based on normal mode analysis in internal coordinates

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258818
Author(s):  
Byung Ho Lee ◽  
Soon Woo Park ◽  
Soojin Jo ◽  
Moon Ki Kim

Large-scale conformational changes are essential for proteins to function properly. Given that these transition events rarely occur, however, it is challenging to comprehend their underlying mechanisms through experimental and theoretical approaches. In this study, we propose a new computational methodology called internal coordinate normal mode-guided elastic network interpolation (ICONGENI) to predict conformational transition pathways in proteins. Its basic approach is to sample intermediate conformations by interpolating the interatomic distance between two end-point conformations with the degrees of freedom constrained by the low-frequency dynamics afforded by normal mode analysis in internal coordinates. For validation of ICONGENI, it is applied to proteins that undergo open-closed transitions, and the simulation results (i.e., simulated transition pathways) are compared with those of another technique, to demonstrate that ICONGENI can explore highly reliable pathways in terms of thermal and chemical stability. Furthermore, we generate an ensemble of transition pathways through ICONGENI and investigate the possibility of using this method to reveal the transition mechanisms even when there are unknown metastable states on rough energy landscapes.

2010 ◽  
Vol 63 (3) ◽  
pp. 405 ◽  
Author(s):  
Ming S. Liu ◽  
Billy D. Todd ◽  
Richard J. Sadus

An essential aspect of protein science is to determine the deductive relationship between structure, dynamics, and various sets of functions. The role of dynamics is currently challenging our understanding of protein functions, both experimentally and theoretically. To verify the internal fluctuations and dynamics correlations in an enzyme protein undergoing conformational transitions, we have applied a coarse-grained dynamics algorithm using the elastic network model for adenylate kinase. Normal mode analysis reveals possible dynamical and allosteric pathways for the transition between the open and the closed states of adenylate kinase. As the ligands binding induces significant flexibility changes of the nucleotides monophosphate (NMP) domain and adenosine triphosphate (ATP) domain, the diagonalized correlation between different structural transition states shows that most correlated motions occur between the NMP domain and the helices surrounding the ATP domain. The simultaneous existence of positive and negative correlations indicates that the conformational changes of adenylate kinase take place in an allosteric manner. Analyses of the cumulated normal mode overlap coefficients and long-range correlated motion provide new insights of operating mechanisms and dynamics of adenylate kinase. They also suggest a quantitative dynamics criterion for determining the allosteric cooperativity, which may be applicable to other proteins.


2011 ◽  
Vol 27 (20) ◽  
pp. 2843-2850 ◽  
Author(s):  
José Ramón Lopéz-Blanco ◽  
José Ignacio Garzón ◽  
Pablo Chacón

2003 ◽  
Vol 24 (7) ◽  
pp. 826-841 ◽  
Author(s):  
Kenshu Kamiya ◽  
Yoko Sugawara ◽  
Hideaki Umeyama

2009 ◽  
Vol 106 (37) ◽  
pp. 15667-15672 ◽  
Author(s):  
Anil Korkut ◽  
Wayne A. Hendrickson

Activities of many biological macromolecules involve large conformational transitions for which crystallography can specify atomic details of alternative end states, but the course of transitions is often beyond the reach of computations based on full-atomic potential functions. We have developed a coarse-grained force field for molecular mechanics calculations based on the virtual interactions of Cα atoms in protein molecules. This force field is parameterized based on the statistical distribution of the energy terms extracted from crystallographic data, and it is formulated to capture features dependent on secondary structure and on residue-specific contact information. The resulting force field is applied to energy minimization and normal mode analysis of several proteins. We find robust convergence in minimizations to low energies and energy gradients with low degrees of structural distortion, and atomic fluctuations calculated from the normal mode analyses correlate well with the experimental B-factors obtained from high-resolution crystal structures. These findings suggest that the virtual atom force field is a suitable tool for various molecular mechanics applications on large macromolecular systems undergoing large conformational changes.


Biopolymers ◽  
2008 ◽  
Vol 89 (7) ◽  
pp. 582-594 ◽  
Author(s):  
Sujit S. Tatke ◽  
Chun K. Loong ◽  
Nicolas D'Souza ◽  
Richard T. Schoephoerster ◽  
M. Prabhakaran

Biochemistry ◽  
2005 ◽  
Vol 44 (19) ◽  
pp. 7228-7239 ◽  
Author(s):  
Mengmeng Wang ◽  
Ronald T. Borchardt ◽  
Richard L. Schowen ◽  
Krzysztof Kuczera

Sign in / Sign up

Export Citation Format

Share Document