scholarly journals Acoustic notch filtering earmuff utilizing Helmholtz resonator arrays

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258842
Author(s):  
Fumiya Mizukoshi ◽  
Hidetoshi Takahashi

In recent years, noisy bustling environments have created situations in which earmuffs must soundproof only specific noise while transmitting significant sounds, such as voices, for work safety and efficiency. Two sound insulation technologies have been utilized: passive noise control (PNC) and active noise control (ANC). However, PNC is incapable of insulating selective frequencies of noise, and ANC is limited to low-frequency sounds. Thus, it has been difficult for traditional earmuffs to cancel out only high-frequency noise that people feel uncomfortable hearing. Here, we propose an acoustic notch filtering earmuff utilizing Helmholtz resonator (HR) arrays that provides a sound attenuation effect around the tuneable resonant frequency. A sheet-like sound insulating plate comprising HR arrays is realized in a honeycomb structure. Since the resonant frequency is determined by the geometry of the HR arrays, a highly audible sound region can be designed as the target frequency. In this research, the acoustic notch filtering performance of the proposed HR array plate is investigated in both simulations and experiments. Furthermore, the fabricated earmuffs using the novel HR array plates achieve a sound insulation performance exceeding 40 dB at the target frequency, which is sufficiently high compared to that of conventional earmuffs. The experimental results confirm that the proposed device is a useful approach for insulating frequency-selective sound.

2021 ◽  
Author(s):  
Fumiya Mizukoshi ◽  
Hidetoshi Takahashi

Abstract In recent years, noisy bustling environments have created situations in which earmuffs must soundproof only specific noise while transmitting significant sounds, such as voices, for work safety and efficiency. Two sound insulation technologies have been utilized: passive noise control (PNC) and active noise control (ANC). However, PNC is incapable of insulating selective frequencies of noise, and ANC is limited to low-frequency sounds. Thus, it has been difficult for traditional earmuffs to cancel out only high-frequency noise that people feel uncomfortable hearing. Here, we propose an acoustic notch filtering earmuff utilizing Helmholtz resonator (HR) arrays that provides a sound attenuation effect around the tuneable resonant frequency. A sheet-like sound insulating plate comprising HR arrays is realized in a honeycomb structure. Since the resonant frequency is determined by the geometry of the HR arrays, a highly audible sound region can be designed as the target frequency. In this research, the acoustic notch filtering performance of the proposed HR array plate was investigated in both simulations and experiments. Furthermore, the fabricated earmuffs using the novel HR array plates achieved a sound insulation performance exceeding 40 dB at the target frequency, which is sufficiently high compared to conventional earmuffs. The experimental results confirm that the proposed device is a useful approach for insulating frequency-selective sound.


2021 ◽  
Vol 263 (2) ◽  
pp. 3975-3986
Author(s):  
Tenon Charly Kone ◽  
Sebastian Ghinet ◽  
Raymond Panneton ◽  
Thomas Dupont ◽  
Anant Grewal

The noise control at multiple tonal frequencies simultaneously, in the low frequency range, is a challenge for aerospace, ground transportation and building industries. In the past few decades, various low frequency noise control solutions based on acoustic metamaterial designs have been presented in the literature. These solutions showed promising performance and are considered a better alternative to conventional sound insulation materials. In the present investigation, it was noticed that subdividing the cavity of a Helmholtz resonator allowed the control of multi-tonal noise at several resonance frequencies simultaneously and a shift of the resonance peaks towards the low frequencies. This paper proposes concepts of Helmholtz resonators with subdivided cavities to improve the sound transmission loss (STL) performance and simultaneously control the noise at several tonal frequencies. HRs with cylindrical shaped cavities were embedded in a layer of porous material. The STL of the metamaterial noise insulation configuration was predicted using serial and parallel assemblies of transfer matrices (TMM) incorporating a thermo-viscous-acoustic approach to accurately account for the viscous and thermal losses of acoustic wave propagation within the metamaterial. The STL calculated using the proposed TMM approach were observed to be in excellent agreement with the finite element method (FEM) numerical results.


2020 ◽  
Vol 68 (5) ◽  
pp. 339-357
Author(s):  
Roberto Fanigliulo ◽  
Lindoro Del Duca ◽  
Laura Fornaciari ◽  
Renato Grilli ◽  
Roberto Tomasome ◽  
...  

The noise at the driver seat of an agricultural tractor is produced mostly by the engine. Its characteristic broadband noise spectrum varies considerably with engine workload. The passive noise control techniques adopted in tractor cabins, based on the application of sound-absorbing and sound-proofing materials, are effective against medium-high frequencies noise components. The residual noise in sound-proof cabins is characterized by tonal emissions with low frequency components (< 500 Hz) but regarded as responsible for various disorders and diseases following long-term exposure. In addition to the "A" weighting filter adopted to evaluate occupational exposure to noise, other approaches are reported in the scientific literature considered more appropriate to evaluate low frequency noise (LFN), as well as studies testifying the effectiveness of active noise control (ANC) technologies in the low frequency range. In this article, the performance of an ANC system is evaluated in its ability to reduce noise levels inside the soundproof cabin of an agricultural tractor. To test this system, spectro-phonometric measurements of the equivalent linear sound pressure level were conducted under controlled and repeatable engine workloads, obtained by connecting the tractor to a dynamometric brake, while simultaneously acquiring the related engine performance curves. Altogether, three different couples of loudspeakers were tested. Frequency analysis in one-third octave band showed that the ANC system was mainly effective against LFN components (below 120 Hz) with peaks of reduction up to 20 dB. Then, on the basis of indications from previous studies, the data of linear sound pressure levels were processed applying the "A", "B", and "C" weighting filters, to show the different emphasis given to the effects of the system. Eventually, a point-by-point composition of the equivalent levels of sound pressure was drawn over the whole range of the engine, to highlight the conditions in which the ANC system was more effective.


2013 ◽  
Vol 333-335 ◽  
pp. 2142-2145
Author(s):  
Qing Fu Kong ◽  
Yu Liang Dai ◽  
Shi Jian Zhu ◽  
Jia Ming Wu

In order to find a solution to the control of low frequency noise in the cabin of turboprop driven aircraft, an experimental active noise control (ANC) system is introduced in the paper, which consists of vibroacoustic field analogue subsystem, acoustic field measurement subsystem and acoustic barrier exciter subsystem. Effects of both different spaces between the primary sound source and secondary sound source of the ANC system and different frequency noises on noise-reduction result are investigated based on the experimental platform. Results of the experiment show a significant potential of the ANC method for the control of low frequency noise in the cabin of turboprop driven aircraft.


Author(s):  
Weiwei Wu ◽  
Yiheng Guan

In this work, modified designs of Helmholtz resonators with extended deflected neck are proposed, numerically evaluated and optimized aiming to achieve a better transmission loss performance over a broader frequency range. For this, 10 Helmholtz resonators with different extended neck configurations (e.g. the angle between extended neck and the y-axis) in the presence of a grazing flow are assessed. Comparison is then made between the proposed resonators and the conventional one, i.e. in the absence of an extended neck (i.e. Design A). For this, a two-dimensional linearized Navier Stokes equations-based model of a duct with the modified Helmholtz resonator implemented was developed in frequency domain. The model was first validated by comparing its numerical predictions with the experimental results available in the literature and the theoretical results. The model was then applied to evaluate the noise damping performance of the Helmholtz resonator with (1) an extended neck on the upstream side (Design B); (2) on the downstream side (Design C), (3) both upstream and downstream sides (Design D), (4) the angle between the extended neck and the y-axis, i.e. (a) 0°, (b) 30°, and (c) 45°, (d) 48.321°. In addition, the effects of the grazing flow Mach number (Ma) were evaluated. It was found that the transmission loss peaks of the Helmholtz resonator with the extended neck was maximized at Ma = 0.03 than at the other Mach numbers. Conventional resonator, i.e. Design A was observed to be associated with a lower transmission loss performance at a lower resonant frequency than those as observed on Designs B–D. Moreover, the optimum design of the proposed resonators with the extended neck is shown to be able to shift the resonant frequency by approximately 90 Hz, and maximum transmission loss could be increased by 28–30 dB. In addition, the resonators with extended necks are found to be associated with two or three transmission loss peaks, indicating that these designs have a broader effective frequency range. Finally, the neck deflection angles of 30° and 45° are shown to be involved with better transmission loss peaks than that with a deflection angle of 0°. In summary, the present study sheds light on maximizing the resonator’s noise damping performances by applying and optimizing an extended neck.


2013 ◽  
Vol 798-799 ◽  
pp. 443-447
Author(s):  
Qi Chen LU ◽  
Hui Bin LI ◽  
Hua Huang

Studying on adaptive active noise control (AANC) system of the truck interior cab to reduce the low-frequency noise,a normalization FLMS algorithm simulink model is established in Matlab/Simulink.Then taking it as the core,a feedforward adaptive active control system and a feedback adaptive active control system of the tuck interior cab are established in Matlab/Simulink .Considerating the actual error channels effects on systems ,the noise reduction effects of two adaptive active control systems are verified from the simulintion results.Through comparing the two wo adaptive active control systems,we found that the feedforward adaptive active control system is more stable.


2019 ◽  
Vol 9 (13) ◽  
pp. 2693 ◽  
Author(s):  
Liming Ying ◽  
Jinwei Wang ◽  
Qin Liu ◽  
Donghui Wang

Active noise control (ANC) technology can be able to reduce the low frequency noise effectively, and has been widely applied in limited enclosed equipment, such as cars, aircraft cockpits, and headphones, etc. Compared with the traditional noise reduction methods, ANC technology is a cost-effective method in handling the low-frequency noise of transformers. An experimental ANC system in a virtual substation is designed and constructed. An adaptive signal tracking ANC algorithm is proposed, and a set of ANC experimental prototypes applied to a virtual substation is designed. Based on the proposed algorithm, the distributions of the acoustics and spectral characteristics of transformer noise in substations are analyzed. Experimental results show that the effective noise reduction can be achieved an average of 5 dB(A) in a given region with respect to the absence of the ANC system.


Sign in / Sign up

Export Citation Format

Share Document