scholarly journals Strength of T cell signaling regulates HIV-1 replication and establishment of latency

2019 ◽  
Vol 15 (5) ◽  
pp. e1007802 ◽  
Author(s):  
Matthew Gagne ◽  
Daniel Michaels ◽  
Gillian M. Schiralli Lester ◽  
Suryaram Gummuluru ◽  
Wilson W. Wong ◽  
...  
Keyword(s):  
T Cell ◽  
2021 ◽  
Author(s):  
Nora Guadalupe Ramirez ◽  
Jeon Lee ◽  
Yue Zheng ◽  
Lianbo Li ◽  
Bryce Dennis ◽  
...  

Immune stimulation fuels cell signaling transcriptional programs inducing biological responses to eliminate virus infected cells. Yet, retroviruses that integrate into host cell chromatin, such as HIV1, coopt these programs to switch between latent and reactivated states; however, the regulatory mechanisms are still unfolding. Here, we implemented a functional screen leveraging HIV1 dependence on CD4+ T cell signaling transcriptional programs and discovered ADAP1 is an undescribed modulator of HIV1 proviral fate. Specifically, we report ADAP1 (ArfGAP with dual PH domain containing protein 1), a previously thought neuronal restricted factor, is an amplifier of select T cell signaling programs. Using complementary biochemical and cellular assays, we demonstrate ADAP1 inducibly interacts with the immune signalosome to directly stimulate KRAS GTPase activity thereby augmenting T cell signaling through targeted activation of the ERK/AP1 axis. Single cell transcriptomics analysis revealed loss of ADAP1 function blunts gene programs upon T cell stimulation consequently dampening latent HIV1 reactivation. Our combined experimental approach defines ADAP1 as an unexpected tuner of T cell programs coopted by HIV1 for latency escape.


2018 ◽  
Author(s):  
M Gagne ◽  
D Michaels ◽  
GM Schiralli Lester ◽  
WW Wong ◽  
S Gummuluru ◽  
...  

AbstractA major barrier to curing HIV is the long-lived latent reservoir that supports re-emergence of HIV upon treatment interruption. Targeting this reservoir will require mechanistic insights into the establishment and maintenance of HIV latency. Whether T cell signaling at the time of HIV-1 infection influences productive replication or latency is not fully understood. We used a panel of chimeric antigen receptors (CARs) with different ligand binding affinities to induce a range of signaling strengths to model differential T cell receptor signaling at the time of HIV-1 infection. Stimulation of T cell lines or primary CD4+ T cells expressing chimeric antigen receptors supported HIV-1 infection regardless of affinity for ligand; however, only signaling by the highest affinity receptor facilitated HIV-1 expression. Activation of chimeric antigen receptors that had intermediate and low binding affinities did not support provirus transcription, suggesting that a minimal signal is required for optimal HIV-1 expression. In addition, strong signaling at the time of infection produced a latent population that was readily inducible, whereas latent cells generated in response to weaker signals were not easily reversed. Chromatin immunoprecipitation showed HIV-1 transcription was limited by transcriptional elongation and that robust signaling decreased the presence of negative elongation factor, a pausing factor, by more than 80%. These studies demonstrate that T cell signaling influences HIV-1 infection and the establishment of different subsets of latently infected cells, which may have implications for targeting the HIV reservoir.Author SummaryActivation of CD4+ T cells facilitates HIV-1 infection; however, whether there are minimal signals required for the establishment of infection, replication, and latency has not been explored. To determine how T cell signaling influences HIV-1 infection and the generation of latently infected cells, we used chimeric antigen receptors to create a tunable model. Stronger signals result in robust HIV-1 expression and an inducible latent population. Minimal signals predispose cells towards latent infections that are refractory to reversal. We discovered that repression of HIV-1 transcription immediately after infection is due to RNA polymerase II pausing and inefficient transcription elongation. These studies demonstrate that signaling events influence the course of HIV-1 infection and have implications for cure strategies. They also provide a mechanistic explanation for why a significant portion of the HIV latent reservoir is not responsive to latency reversing agents which function by modifiying chromatin.


2013 ◽  
Vol 7 (1) ◽  
pp. 57-71 ◽  
Author(s):  
Wasim Abbas ◽  
Georges Herbein

HIV exploits the T-cell signaling network to gain access to downstream cellular components, which serves as effective tools to break the cellular barriers. Multiple host factors and their interaction with viral proteins contribute to the complexity of HIV-1 pathogenesis and disease progression. HIV-1 proteins gp120, Nef, Tat and Vpr alter the T-cell signaling pathways by activating multiple transcription factors including NF-ĸB, Sp1 and AP-1. HIV-1 evades the immune system by developing a multi-pronged strategy. Additionally, HIV-1 encoded proteins influence the apoptosis in the host cell favoring or blocking T-cell apoptosis. Thus, T-cell signaling hijacked by viral proteins accounts for both viral persistence and immune suppression during HIV-1 infection. Here, we summarize past and present studies on HIV-1 T-cell signaling with special focus on the possible role of T cells in facilitating viral infection and pathogenesis


2021 ◽  
Author(s):  
Riley Horvath ◽  
Tom Malcolm ◽  
Matthew Dahabieh ◽  
Ivan Sadowski

The conserved HIV-1 LTR cis elements RBE1/3 bind the factor RBF2, consisting of USF1/2 and TFII-I, and are essential for reactivation of HIV-1 by T cell signaling. We determined that TFII-I recruits the tripartite motif protein TRIM24 to the LTR, and this interaction is required for efficient reactivation of HIV-1 expression in response to T cell signaling, similar to the effect of TFII-I depletion. Knockout of TRIM24 did not affect recruitment of RNA Pol II to the LTR promoter, but inhibited transcriptional elongation, an effect that was associated with decreased RNA Pol II CTD S2 phosphorylation and impaired recruitment of CDK9 to the LTR. These results demonstrate that TFII-I promotes transcriptional elongation in response to T cell activation through recruitment of the co-factor TRIM24, which is necessary for efficient recruitment of the elongation factor P-TEFb.


PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e41725 ◽  
Author(s):  
Shigemi M. Kinoshita ◽  
Peter O. Krutzik ◽  
Garry P. Nolan

Cell Reports ◽  
2017 ◽  
Vol 18 (4) ◽  
pp. 1062-1074 ◽  
Author(s):  
Alice C.L. Len ◽  
Shimona Starling ◽  
Maitreyi Shivkumar ◽  
Clare Jolly

2012 ◽  
Vol 7 (6) ◽  
pp. 609-620 ◽  
Author(s):  
Shailendra K Saxena ◽  
Gaurav Shrivastava ◽  
Sneham Tiwari ◽  
ML Arvinda Swamy ◽  
Madhavan PN Nair

Diabetes ◽  
1994 ◽  
Vol 43 (1) ◽  
pp. 47-52 ◽  
Author(s):  
D. Bellgrau ◽  
J. M. Redd ◽  
K. S. Sellins

Sign in / Sign up

Export Citation Format

Share Document