rab effector
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 5)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 11 ◽  
Author(s):  
Yannick von Grabowiecki ◽  
Vinaya Phatak ◽  
Lydia Aschauer ◽  
Patricia A. J. Muller

Rab11-FIP1 is a Rab effector protein that is involved in endosomal recycling and trafficking of various molecules throughout the endocytic compartments of the cell. The consequence of this can be increased secretion or increased membrane expression of those molecules. In general, expression of Rab11-FIP1 coincides with more tumourigenic and metastatic cell behaviour. Rab11-FIP1 can work in concert with oncogenes such as mutant p53, but has also been speculated to be an oncogene in its own right. In this perspective, we will discuss and speculate upon our observations that mutant p53 promotes Rab11-FIP1 function to not only promote invasive behaviour, but also chemoresistance by regulating a multitude of different proteins.


2021 ◽  
Vol 4 (5) ◽  
pp. e202101050
Author(s):  
Herschel S Dhekne ◽  
Izumi Yanatori ◽  
Edmundo G Vides ◽  
Yuriko Sobu ◽  
Federico Diez ◽  
...  

Activating mutations in LRRK2 kinase causes Parkinson’s disease. Pathogenic LRRK2 phosphorylates a subset of Rab GTPases and blocks ciliogenesis. Thus, defining novel phospho-Rab interacting partners is critical to our understanding of the molecular basis of LRRK2 pathogenesis. RILPL2 binds with strong preference to LRRK2-phosphorylated Rab8A and Rab10. RILPL2 is a binding partner of the motor protein and Rab effector, Myosin Va. We show here that the globular tail domain of Myosin Va also contains a high affinity binding site for LRRK2-phosphorylated Rab10. In the presence of pathogenic LRRK2, RILPL2 and MyoVa relocalize to the peri-centriolar region in a phosphoRab10-dependent manner. PhosphoRab10 retains Myosin Va over pericentriolar membranes as determined by fluorescence loss in photobleaching microscopy. Without pathogenic LRRK2, RILPL2 is not essential for ciliogenesis but RILPL2 over-expression blocks ciliogenesis in RPE cells independent of tau tubulin kinase recruitment to the mother centriole. These experiments show that LRRK2 generated-phosphoRab10 dramatically redistributes a significant fraction of Myosin Va and RILPL2 to the mother centriole in a manner that likely interferes with Myosin Va’s role in ciliogenesis.


2020 ◽  
Vol 117 (29) ◽  
pp. 17003-17010 ◽  
Author(s):  
Hersh K. Bhargava ◽  
Keisuke Tabata ◽  
Jordan M. Byck ◽  
Maho Hamasaki ◽  
Daniel P. Farrell ◽  
...  

Rubicon is a potent negative regulator of autophagy and a potential target for autophagy-inducing therapeutics. Rubicon-mediated inhibition of autophagy requires the interaction of the C-terminal Rubicon homology (RH) domain of Rubicon with Rab7–GTP. Here we report the 2.8-Å crystal structure of the Rubicon RH domain in complex with Rab7–GTP. Our structure reveals a fold for the RH domain built around four zinc clusters. The switch regions of Rab7 insert into pockets on the surface of the RH domain in a mode that is distinct from those of other Rab–effector complexes. Rubicon residues at the dimer interface are required for Rubicon and Rab7 to colocalize in living cells. Mutation of Rubicon RH residues in the Rab7-binding site restores efficient autophagic flux in the presence of overexpressed Rubicon, validating the Rubicon RH domain as a promising therapeutic target.


2020 ◽  
Author(s):  
Izumi Yanatori ◽  
Herschel S. Dhekne ◽  
Edmundo G. Vides ◽  
Yuriko Sobu ◽  
Federico Diez ◽  
...  

AbstractActivating mutations in LRRK2 kinase cause Parkinson’s disease. Pathogenic LRRK2 phosphorylates a subset of Rab GTPases and blocks ciliogenesis. Thus, defining novel phospho-Rab interacting partners is critical to our understanding of the molecular basis of LRRK2 pathogenesis. RILPL2 binds with strong preference to LRRK2-phosphorylated Rab8A and Rab10. RILPL2 is a binding partner of the motor protein and Rab effector, Myosin Va. We show here that the globular tail domain of Myosin Va also contains a high affinity binding site for LRRK2-phosphorylated Rab10, and certain tissue-specific Myosin Va isoforms strongly prefer to bind phosphorylated Rab10. In the presence of pathogenic LRRK2, RILPL2 relocalizes to the peri-centriolar region in a phosphoRab10- and Myosin Va-dependent manner. In the absence of phosphoRab10, expression of RILPL2 or depletion of Myosin Va increase centriolar RILPL2 levels, and either condition is sufficient to block ciliogenesis in RPE cells. These experiments show that LRRK2 generated phosphoRab10 dramatically redistributes Myosin Va-RILPL2 complexes to the mother centriole, which may sequester Myosin Va and RILPL2 in a manner that blocks their normal roles in ciliogenesis.


Author(s):  
Hersh K. Bhargava ◽  
Keisuke Tabata ◽  
Jordan M. Byck ◽  
Maho Hamasaki ◽  
Daniel P. Farrell ◽  
...  

AbstractRubicon is a potent negative regulator of autophagy and a potential target for autophagy-inducing therapeutics. Rubicon-mediated inhibition of autophagy requires the interaction of the C-terminal Rubicon homology (RH) domain of Rubicon with Rab7-GTP. Here we report the 2.8 Å crystal structure of the Rubicon RH domain in complex with Rab7-GTP. Our structure reveals a novel fold for the RH domain built around four zinc clusters. The switch regions of Rab7 insert into pockets on the surface of the RH domain in a mode that is distinct from those of other Rab-effector complexes. Rubicon residues at the dimer interface are required for Rubicon and Rab7 to colocalize in living cells. Mutation of Rubicon RH residues in the Rab7 binding site restore efficient autophagic flux in the presence of overexpressed Rubicon, validating the Rubicon RH domain as a promising therapeutic target.


2018 ◽  
Vol 47 (1) ◽  
pp. 80-97.e6 ◽  
Author(s):  
Mahmoud Abdul Karim ◽  
Erin Kate McNally ◽  
Dieter Ronny Samyn ◽  
Sevan Mattie ◽  
Christopher Leonard Brett

2018 ◽  
Vol 29 (12) ◽  
pp. 1476-1486 ◽  
Author(s):  
Guendalina Rossi ◽  
Kelly Watson ◽  
Wade Kennedy ◽  
Patrick Brennwald

The tomosyn/Sro7 family is thought to play an important role in cell surface trafficking both as an effector of Rab family GTPases and as a regulator of plasma-membrane SNARE function. Recent work has determined the binding site of GTP-bound Sec4 on Sro7. Here we examine the effect of mutations in Sro7 that block Sec4 binding in determining the role of this interaction in Sro7 function. Using an in vitro vesicle:vesicle tethering assay, we find that most of Sro7’s ability to tether vesicles is blocked by mutations that disrupt binding to Sec4-GTP. Similarly, genetic analysis demonstrates that the interaction with Sec4 is important for most of Sro7’s functions in vivo. The interaction of Sro7 with Sec4 appears to be particularly important when exocyst function is compromised. This provides strong evidence that Sro7 and the exocyst act as dual effector pathways downstream of Sec4. We also demonstrate that Sro7 tethering requires the presence of Sec4 on both opposing membranes and that homo-oligomerization of Sro7 occurs during vesicle tethering. This suggests a simple model for Sro7 function as a Rab effector in tethering post-Golgi vesicles to the plasma membrane in a pathway parallel to that of the exocyst complex.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Emi Ito ◽  
Kazuo Ebine ◽  
Seung-won Choi ◽  
Sakura Ichinose ◽  
Tomohiro Uemura ◽  
...  

RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells.


Small GTPases ◽  
2017 ◽  
Vol 10 (1) ◽  
pp. 40-46 ◽  
Author(s):  
Amrita Rai ◽  
Roger S. Goody ◽  
Matthias P. Müller
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document