scholarly journals Binding and entering: COVID finds a new home

2021 ◽  
Vol 17 (8) ◽  
pp. e1009857
Author(s):  
Michelle N. Vu ◽  
Vineet D. Menachery

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) emerged as a virus with a pathogenicity closer to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and a transmissibility similar to common cold coronaviruses (CoVs). In this review, we briefly discuss the features of the receptor-binding domain (RBD) and protease cleavage of the SARS-CoV-2 spike protein that enable SARS-CoV-2 to be a pandemic virus.

Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 635
Author(s):  
Ju Kim ◽  
Ye Lin Yang ◽  
Yongsu Jeong ◽  
Yong-Suk Jang

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe acute respiratory symptoms. Due to the lack of medical countermeasures, effective and safe vaccines against MERS-CoV infection are urgently required. Although different types of candidate vaccines have been developed, their immunogenicity is limited, and the dose and administration route need optimization to achieve optimal protection. We here investigated the potential use of human β-defensin 2 (HBD 2) as an adjuvant to enhance the protection provided by MERS-CoV vaccination. We found that immunization of human dipeptidyl peptidase 4 (hDPP4)-transgenic (hDPP4-Tg) mice with spike protein receptor-binding domain (S RBD) conjugated with HBD 2 (S RBD-HBD 2) induced potent antigen (Ag)-specific adaptive immune responses and protected against MERS-CoV infection. In addition, immunization with S RBD-HBD 2 alleviated progressive pulmonary fibrosis in the lungs of MERS-CoV-infected hDPP4-Tg mice and suppressed endoplasmic reticulum stress signaling activation upon viral infection. Compared to intramuscular administration, intranasal administration of S RBD-HBD 2 induced more potent mucosal IgA responses and was more effective for protecting against intranasal MERS-CoV infection. In conclusion, our findings suggest that HBD 2 potentiates Ag-specific immune responses against viral Ag and can be used as an adjuvant enhancing the immunogenicity of subunit vaccine candidates against MERS-CoV.


2013 ◽  
Vol 87 (19) ◽  
pp. 10777-10783 ◽  
Author(s):  
Y. Chen ◽  
K. R. Rajashankar ◽  
Y. Yang ◽  
S. S. Agnihothram ◽  
C. Liu ◽  
...  

2021 ◽  
Author(s):  
Amrutham Linet ◽  
Manu M Joseph ◽  
Haritha Mambatta ◽  
Shamna k ◽  
Sunil varughese ◽  
...  

The recent outbreak of the COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which infects human epithelial tissue by interaction of the receptor-binding domain of its spike...


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 724
Author(s):  
Paola Cristina Resende ◽  
Tiago Gräf ◽  
Anna Carolina Dias Paixão ◽  
Luciana Appolinario ◽  
Renata Serrano Lopes ◽  
...  

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in Brazil was dominated by two lineages designated as B.1.1.28 and B.1.1.33. The two SARS-CoV-2 variants harboring mutations at the receptor-binding domain of the Spike (S) protein, designated as lineages P.1 and P.2, evolved from lineage B.1.1.28 and are rapidly spreading in Brazil. Lineage P.1 is considered a Variant of Concern (VOC) because of the presence of multiple mutations in the S protein (including K417T, E484K, N501Y), while lineage P.2 only harbors mutation S:E484K and is considered a Variant of Interest (VOI). On the other hand, epidemiologically relevant B.1.1.33 deriving lineages have not been described so far. Here we report the identification of a new SARS-CoV-2 VOI within lineage B.1.1.33 that also harbors mutation S:E484K and was detected in Brazil between November 2020 and February 2021. This VOI displayed four non-synonymous lineage-defining mutations (NSP3:A1711V, NSP6:F36L, S:E484K, and NS7b:E33A) and was designated as lineage N.9. The VOI N.9 probably emerged in August 2020 and has spread across different Brazilian states from the Southeast, South, North, and Northeast regions.


Sign in / Sign up

Export Citation Format

Share Document