scholarly journals Identification of a Receptor-Binding Domain in the S Protein of the Novel Human Coronavirus Middle East Respiratory Syndrome Coronavirus as an Essential Target for Vaccine Development

2013 ◽  
Vol 87 (21) ◽  
pp. 11963-11963 ◽  
Author(s):  
L. Du ◽  
G. Zhao ◽  
Z. Kou ◽  
C. Ma ◽  
S. Sun ◽  
...  
2013 ◽  
Vol 87 (19) ◽  
pp. 10777-10783 ◽  
Author(s):  
Y. Chen ◽  
K. R. Rajashankar ◽  
Y. Yang ◽  
S. S. Agnihothram ◽  
C. Liu ◽  
...  

Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 635
Author(s):  
Ju Kim ◽  
Ye Lin Yang ◽  
Yongsu Jeong ◽  
Yong-Suk Jang

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe acute respiratory symptoms. Due to the lack of medical countermeasures, effective and safe vaccines against MERS-CoV infection are urgently required. Although different types of candidate vaccines have been developed, their immunogenicity is limited, and the dose and administration route need optimization to achieve optimal protection. We here investigated the potential use of human β-defensin 2 (HBD 2) as an adjuvant to enhance the protection provided by MERS-CoV vaccination. We found that immunization of human dipeptidyl peptidase 4 (hDPP4)-transgenic (hDPP4-Tg) mice with spike protein receptor-binding domain (S RBD) conjugated with HBD 2 (S RBD-HBD 2) induced potent antigen (Ag)-specific adaptive immune responses and protected against MERS-CoV infection. In addition, immunization with S RBD-HBD 2 alleviated progressive pulmonary fibrosis in the lungs of MERS-CoV-infected hDPP4-Tg mice and suppressed endoplasmic reticulum stress signaling activation upon viral infection. Compared to intramuscular administration, intranasal administration of S RBD-HBD 2 induced more potent mucosal IgA responses and was more effective for protecting against intranasal MERS-CoV infection. In conclusion, our findings suggest that HBD 2 potentiates Ag-specific immune responses against viral Ag and can be used as an adjuvant enhancing the immunogenicity of subunit vaccine candidates against MERS-CoV.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009857
Author(s):  
Michelle N. Vu ◽  
Vineet D. Menachery

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) emerged as a virus with a pathogenicity closer to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and a transmissibility similar to common cold coronaviruses (CoVs). In this review, we briefly discuss the features of the receptor-binding domain (RBD) and protease cleavage of the SARS-CoV-2 spike protein that enable SARS-CoV-2 to be a pandemic virus.


Author(s):  
Phuong Nguyen-Contant ◽  
A. Karim Embong ◽  
Preshetha Kanagaiah ◽  
Francisco A. Chaves ◽  
Hongmei Yang ◽  
...  

ABSTRACTThe high susceptibility of humans to SARS-CoV-2 infection, the cause of COVID-19, reflects the novelty of the virus and limited preexisting B cell immunity. IgG against the SARS-CoV-2 spike (S) protein, which carries the novel receptor binding domain (RBD), is absent or at low levels in unexposed individuals. To better understand the B cell response to SARS-CoV-2 infection, we asked whether virus-reactive memory B cells (MBCs) were present in unexposed subjects and whether MBC generation accompanied virus-specific IgG production in infected subjects. We analyzed sera and PBMCs from non-SARS-CoV-2-exposed healthy donors and COVID-19 convalescent subjects. Serum IgG levels specific for SARS-CoV-2 proteins (S, including the RBD and S2 subunit, and nucleocapsid [N]) and non-SARS-CoV-2 proteins were related to measurements of circulating IgG MBCs. Anti-RBD IgG was absent in unexposed subjects. Most unexposed subjects had anti-S2 IgG and a minority had anti-N IgG, but IgG MBCs with these specificities were not detected, perhaps reflecting low frequencies. Convalescent subjects had high levels of IgG against the RBD, S2, and N, together with large populations of RBD- and S2-reactive IgG MBCs. Notably, IgG titers against the S protein of the human coronavirus OC43 in convalescent subjects were higher than in unexposed subjects and correlated strongly with anti-S2 titers. Our findings indicate cross-reactive B cell responses against the S2 subunit that might enhance broad coronavirus protection. Importantly, our demonstration of MBC induction by SARS-CoV-2 infection suggests that a durable form of B cell immunity is maintained even if circulating antibody levels wane.IMPORTANCERecent rapid worldwide spread of SARS-CoV-2 has established a pandemic of potentially serious disease in the highly susceptible human population. Key questions are whether humans have preexisting immune memory that provides some protection against SARS-CoV-2 and whether SARS-CoV-2 infection generates lasting immune protection against reinfection. Our analysis focused on pre- and post-infection IgG and IgG memory B cells (MBCs) reactive to SARS-CoV-2 proteins. Most importantly, we demonstrate that infection generates both IgG and IgG MBCs against the novel receptor binding domain and the conserved S2 subunit of the SARS-CoV-2 spike protein. Thus, even if antibody levels wane, long-lived MBCs remain to mediate rapid antibody production. Our study also suggests that SARS-CoV-2 infection strengthens preexisting broad coronavirus protection through S2-reactive antibody and MBC formation.


Viruses ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 60 ◽  
Author(s):  
Yusen Zhou ◽  
Yang Yang ◽  
Jingwei Huang ◽  
Shibo Jiang ◽  
Lanying Du

Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is an infectious virus that was first reported in 2012. The MERS-CoV genome encodes four major structural proteins, among which the spike (S) protein has a key role in viral infection and pathogenesis. The receptor-binding domain (RBD) of the S protein contains a critical neutralizing domain and is an important target for development of MERS vaccines and therapeutics. In this review, we describe the relevant features of the MERS-CoV S-protein RBD, summarize recent advances in the development of MERS-CoV RBD-based vaccines and therapeutic antibodies, and illustrate potential challenges and strategies to further improve their efficacy.


Author(s):  
Robert J Edwards ◽  
Katayoun Mansouri ◽  
Victoria Stalls ◽  
Kartik Manne ◽  
Brian Watts ◽  
...  

AbstractThe SARS-CoV-2 spike (S) protein, a primary target for COVID-19 vaccine development, presents its Receptor Binding Domain in two conformations: receptor-accessible “up” or receptor-inaccessible “down” conformations. Here, we report that the commonly used stabilized S ectodomain construct “2P” is sensitive to cold temperature, and that this cold sensitivity is resolved in a “down” state stabilized spike. Our results will impact structural, functional and vaccine studies that use the SARS-CoV-2 S ectodomain.


2019 ◽  
Vol 94 (5) ◽  
Author(s):  
Yuan Yuan ◽  
Jianxun Qi ◽  
Ruchao Peng ◽  
Chunrui Li ◽  
Guangwen Lu ◽  
...  

ABSTRACT Continued reports of Middle East respiratory syndrome coronavirus (MERS-CoV) infecting humans have occurred since the identification of this virus in 2012. MERS-CoV is prone to cause endemic disease in the Middle East, with several dozen spillover infections to other continents. It is hypothesized that MERS-CoV originated from bat coronaviruses and that dromedary camels are its natural reservoir. Although gene segments identical to MERS-CoV were sequenced from certain species of bats and one species experimentally shed the virus, it is still unknown whether other bats can transmit the virus. Here, at the molecular level, we found that all purified bat CD26s (bCD26s) from a diverse range of species interact with the receptor binding domain (RBD) of MERS-CoV, with equilibrium dissociation constant values ranging from several to hundreds at the micromolar level. Moreover, all bCD26s expressed in this study mediated the entry of pseudotyped MERS-CoV to receptor-expressing cells, indicating the broad potential engagement of bCD26s as MERS-CoV receptors. Further structural analysis indicated that in the bat receptor, compared to the human receptor, substitutions of key residues and their adjacent amino acids leads to decreased binding affinity to the MERS-RBD. These results add more evidence to the existing belief that bats are the original source of MERS-CoV and suggest that bCD26s in many species can mediate the entry of the virus, which has significant implications for the surveillance and control of MERS-CoV infection. IMPORTANCE In this study, we found that bat CD26s (bCD26s) from different species exhibit large diversities, especially in the region responsible for binding to the receptor binding domain (RBD) of Middle East respiratory syndrome coronavirus (MERS-CoV). However, they maintain the interaction with MERS-RBD at varied affinities and support the entry of pseudotyped MERS-CoV. These bat receptors polymorphisms seem to confer evolutionary pressure for the adaptation of CD26-binding virus, such as the ancestor of MERS-CoV, and led to the generation of diversified CD26-engaging CoV strains. Thus, our data add more evidence to support that bats are the reservoir of MERS-CoV and similar viruses, as well as further emphasize the necessity to survey MERS-CoV and other CoVs among bats.


Sign in / Sign up

Export Citation Format

Share Document