cross neutralization
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 85)

H-INDEX

42
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Daniel J. Sheward ◽  
Pradeepa Pushparaj ◽  
Hrishikesh Das ◽  
Changil Kim ◽  
Sungyong Kim ◽  
...  

The SARS-CoV-2 Omicron Variant of Concern (B.1.1.529) has spread rapidly in many countries. With a spike that is highly diverged from that of the pandemic founder, it escapes most available monoclonal antibody therapeutics and erodes vaccine protection. A public class of IGHV3-53-using SARS-CoV-2 neutralizing antibodies typically fails to neutralize variants carrying mutations in the receptor-binding motif, including Omicron. As antibodies from this class are likely elicited in most people following SARS-CoV-2 infection or vaccination, their subsequent affinity maturation is of particular interest. Here, we isolated IGHV3-53-using antibodies from an individual seven months after infection and identified several antibodies capable of broad and potent SARS-CoV-2 neutralization, extending to Omicron without loss of potency. By introducing select somatic hypermutations into a germline-reverted form of one such antibody, CAB-A17, we demonstrate the potential for commonly elicited antibodies to develop broad cross-neutralization through affinity maturation. Further, we resolved the structure of CAB-A17 Fab in complex with Omicron spike at an overall resolution of 2.6 angstroms by cryo-electron microscopy and defined the structural basis for this breadth. Thus, public SARS-CoV-2 neutralizing antibodies can, without modified spike vaccines, mature to cross-neutralize exceptionally antigenically diverged SARS-CoV-2 variants.


2022 ◽  
Author(s):  
Sho Miyamoto ◽  
Takeshi Arashiro ◽  
Yu Adachi ◽  
Saya Moriyama ◽  
Hitomi Kinoshita ◽  
...  

Background The immune profile against SARS-CoV-2 has dramatically diversified due to a complex combination of exposure to vaccines and infection by various lineages/variants, likely generating a heterogeneity in protective immunity in a given population. To further complicate this, the Omicron variant, with numerous spike mutations, has emerged. These circumstances have created the need to assess the potential of immune evasion by the Omicron in individuals with various immune histories. Methods The neutralization susceptibility of the variants including the Omicron and their ancestor was comparably assessed using a panel of plasma/serum derived from individuals with divergent immune histories. Blood samples were collected from either mRNA vaccinees or from those who suffered from breakthrough infections by the Alpha/Delta with multiple time intervals following vaccination. Findings The Omicron was highly resistant to neutralization in fully vaccinated individuals without a history of breakthrough infections. In contrast, robust cross-neutralization against the Omicron were induced in vaccinees that experienced breakthrough infections. The time interval between vaccination and infection, rather than the variant types of infection, was significantly correlated with the magnitude and potency of Omicron-neutralizing antibodies. Conclusions Immune histories with breakthrough infections can overcome the resistance to infection by the Omicron, with the vaccination-infection interval being the key determinant of the magnitude and breadth of neutralization. The diverse exposure history in each individual warrants a tailored and cautious approach to understanding population immunity against the Omicron and future variants. Funding This study was supported by grants from the Japan Agency for Medical Research and Development (AMED).


Nano Today ◽  
2022 ◽  
pp. 101393
Author(s):  
Ye Zhang ◽  
Ruixin Wang ◽  
Chunyan He ◽  
Yu-Fang Zhang ◽  
Zhongrui Luo ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Corine H. GeurtsvanKessel ◽  
Daryl Geers ◽  
Katharina S. Schmitz ◽  
Anna Z. Mykytyn ◽  
Mart M. Lamers ◽  
...  

The severe acute respiratory distress syndrome coronavirus-2 (SARS-CoV-2) Omicron variant (B.1.1.529) is spreading rapidly, even in vaccinated individuals, raising concerns about immune escape. Here, we studied neutralizing antibodies and T-cell responses to SARS-CoV-2 D614G (wildtype, WT), and the B.1.351 (Beta), B.1.617.2 (Delta), and B.1.1.529 (Omicron) variants of concern (VOC) in a cohort of 60 health care workers (HCW) after immunization with ChAdOx-1 S, Ad26.COV2.S, mRNA-1273 or BNT162b2. High binding antibody levels against WT SARS-CoV-2 spike (S) were detected 28 days after vaccination with both mRNA vaccines (mRNA-1273 or BNT162b2), which significantly decreased after 6 months. In contrast, antibody levels were lower after Ad26.COV2.S vaccination but did not wane. Neutralization assays with authentic virus showed consistent cross-neutralization of the Beta and Delta variants in study participants, but Omicron-specific responses were significantly lower or absent (up to a 34-fold decrease compared to D614G). Notably, BNT162b2 booster vaccination after either two mRNA-1273 immunizations or Ad26.COV.2 priming partially restored neutralization of the Omicron variant, but responses were still up to-17-fold decreased compared to D614G. CD4+ T-cell responses were detected up to 6 months after all vaccination regimens; S-specific T-cell responses were highest after mRNA-1273 vaccination. No significant differences were detected between D614G- and variant-specific T-cell responses, including Omicron, indicating minimal escape at the T-cell level. This study shows that vaccinated individuals retain T-cell immunity to the SARS-CoV-2 Omicron variant, potentially balancing the lack of neutralizing antibodies in preventing or limiting severe COVID-19. Booster vaccinations may be needed to further restore Omicron cross-neutralization by antibodies.


2021 ◽  
Author(s):  
jing Zou ◽  
Hongjie Xia ◽  
Xuping Xie ◽  
Chaitanya Kurhade ◽  
Rafael R. Machado ◽  
...  

The explosive spread of the Omicron SARS-CoV-2 variant underscores the importance of analyzing the cross-protection from previous non-Omicron infection. We developed a high-throughput neutralization assay for Omicron SARS-CoV-2 by engineering the Omicron spike gene into an mNeonGreen USA-WA1/2020 SARS-CoV-2 (isolated in January 2020). Using this assay, we determined the neutralization titers of patient sera collected at 1- or 6-months after infection with non-Omicron SARS-CoV-2. From 1- to 6-month post-infection, the neutralization titers against USA-WA1/2020 decreased from 601 to 142 (a 4.2-fold reduction), while the neutralization titers against Omicron-spike SARS-CoV-2 remained low at 38 and 32, respectively. Thus, at 1- and 6-months after non-Omicron SARS-CoV-2 infection, the neutralization titers against Omicron were 15.8- and 4.4-fold lower than those against USA-WA1/2020, respectively. The low cross-neutralization against Omicron from previous non-Omicron infection supports vaccination of formerly infected individuals to mitigate the health impact of the ongoing Omicron surge.


2021 ◽  
Author(s):  
John E Bowen ◽  
Alexandra C Walls ◽  
Anshu Joshi ◽  
Kaitlin R Sprouse ◽  
Cameron Stewart ◽  
...  

Numerous safe and effective COVID-19 vaccines have been developed that utilize various delivery technologies and engineering strategies. The influence of the SARS-CoV-2 spike (S) glycoprotein conformation on antibody responses induced by vaccination or infection in humans remains unknown. To address this question, we compared plasma antibodies elicited by six globally-distributed vaccines or infection and observed markedly higher binding titers for vaccines encoding a prefusion-stabilized S relative to other groups. Prefusion S binding titers positively correlated with plasma neutralizing activity, indicating that physical stabilization of the prefusion conformation enhances protection against SARS-CoV-2. We show that almost all plasma neutralizing activity is directed to prefusion S, in particular the S1 subunit, and that variant cross-neutralization is mediated solely by RBD-specific antibodies. Our data provide a quantitative framework for guiding future S engineering efforts to develop vaccines with higher resilience to the emergence of variants and longer durability than current technologies.


2021 ◽  
Author(s):  
Daniel J. Sheward ◽  
Changil Kim ◽  
Roy A. Ehling ◽  
Alec Pankow ◽  
Xaquin Castro Dopico ◽  
...  

The recently-emerged SARS-CoV-2 B.1.1.529 variant (Omicron) is spreading rapidly in many countries, with a spike that is highly diverged from the pandemic founder, raising fears that it may evade neutralizing antibody responses. We cloned the Omicron spike from a diagnostic sample which allowed us to rapidly establish an Omicron pseudotyped virus neutralization assay, sharing initial neutralization results only 13 days after the variant was first reported to the WHO, 8 days after receiving the sample. Here we show that Omicron is substantially resistant to neutralization by several monoclonal antibodies that form part of clinical cocktails. Further, we find neutralizing antibody responses in pooled reference sera sampled shortly after infection or vaccination are substantially less potent against Omicron, with neutralizing antibody titers reduced by up to 45 fold compared to those for the pandemic founder. Similarly, in a cohort of convalescent sera prior to vaccination, neutralization of Omicron was low to undetectable. However, in recent samples from two cohorts from Stockholm, Sweden, antibody responses capable of cross-neutralizing Omicron were prevalent. Sera from infected-then-vaccinated healthcare workers exhibited robust cross-neutralization of Omicron, with an average potency reduction of only 5-fold relative to the pandemic founder variant, and some donors showing no loss at all. A similar pattern was observed in randomly sampled recent blood donors, with an average 7-fold loss of potency. Both cohorts showed substantial between-donor heterogeneity in their ability to neutralize Omicron. Together, these data highlight the extensive but incomplete evasion of neutralizing antibody responses by the Omicron variant, and suggest that increasing the magnitude of neutralizing antibody responses by boosting with unmodified vaccines may suffice to raise titers to levels that are protective.


JAMA ◽  
2021 ◽  
Author(s):  
Timothy A. Bates ◽  
Savannah K. McBride ◽  
Bradie Winders ◽  
Devin Schoen ◽  
Lydie Trautmann ◽  
...  

EBioMedicine ◽  
2021 ◽  
Vol 74 ◽  
pp. 103700
Author(s):  
Yannick Galipeau ◽  
Vinayakumar Siragam ◽  
Geneviève Laroche ◽  
Erika Marion ◽  
Matthew Greig ◽  
...  
Keyword(s):  

Author(s):  
Nitin Khandelwal ◽  
Yogesh Chander ◽  
Ram Kumar ◽  
Himanshu Nagori ◽  
Assim Verma ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly evolved to generate several antigenic variants. These variants have raised concerns whether pre-existing immunity to vaccination or prior infection would be able to protect against the newly emerging SARS-CoV-2 variants or not. We isolated SARS-CoV-2 from the coronavirus disease 2019 (COVID-19)-confirmed patients in the beginning of the first (April/May 2020) and second (April/May 2021) waves of COVID-19 in India (Hisar, Haryana). Upon complete nucleotide sequencing, the viruses were found to be genetically related with wild-type (WT) and Delta variants of SARS-CoV-2, respectively. The Delta variant of SARS-CoV-2 produced a rapid cytopathic effect (24–36 h as compared to 48–72 h in WT) and had bigger plaque size but a shorter life cycle (~6 h as compared to the ~8 h in WT). Furthermore, the Delta variant achieved peak viral titers within 24 h as compared to the 48 h in WT. These evidence suggested that the Delta variant replicates significantly faster than the WT SARS-CoV-2. The virus neutralization experiments indicated that antibodies elicited by vaccination are more efficacious in neutralizing the WT virus but significantly less potent against the Delta variant. Our findings have implications in devising suitable vaccination, diagnostic and therapeutic strategies, besides providing insights into understanding virus replication and transmission.


Sign in / Sign up

Export Citation Format

Share Document