scholarly journals Evaluation of Serum Protein Profiling by Surface-Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for the Detection of Prostate Cancer: I. Assessment of Platform Reproducibility

2005 ◽  
Vol 51 (1) ◽  
pp. 102-112 ◽  
Author(s):  
O John Semmes ◽  
Ziding Feng ◽  
Bao-Ling Adam ◽  
Lionel L Banez ◽  
William L Bigbee ◽  
...  

Abstract Background: Protein expression profiling for differences indicative of early cancer has promise for improving diagnostics. This report describes the first stage of a National Cancer Institute/Early Detection Research Network-sponsored multiinstitutional evaluation and validation of this approach for detection of prostate cancer. Methods: Two sequential experimental phases were conducted to establish interlaboratory calibration and standardization of the surface-enhanced laser desorption (SELDI) instrumental and assay platform output. We first established whether the output from multiple calibrated Protein Biosystem II SELDI-ionization time-of-flight mass spectrometry (TOF-MS) instruments demonstrated acceptable interlaboratory reproducibility. This was determined by measuring mass accuracy, resolution, signal-to-noise ratio, and normalized intensity of three m/z “peaks” present in a standard pooled serum sample. We next evaluated the ability of the calibrated and standardized instrumentation to accurately differentiate between selected cases of prostate cancer and control by use of an algorithm developed from data derived from a single site 2 years earlier. Results: When the described standard operating procedures were established at all laboratory sites, the across-laboratory measurements revealed a CV for mass accuracy of 0.1%, signal-to-noise ratio of ∼40%, and normalized intensity of 15–36% for the three pooled serum peaks. This was comparable to the intralaboratory measurements of the same peaks. The instrument systems were then challenged with sera from a selected group of 14 cases and 14 controls. The classification agreement between each site and the established decision algorithm were examined by use of both raw peak intensity boosting and ranked peak intensity boosting. All six sites achieved perfect blinded classification for all samples when boosted alignment of raw intensities was used. Four of six sites achieved perfect blinded classification with ranked intensities, with one site passing the criteria of 26 of 28 correct and one site failing with 19 of 28 correct. Conclusions: These results demonstrate that “between-laboratory” reproducibility of SELDI-TOF-MS serum profiling approaches that of “within-laboratory” reproducibility as determined by measuring discrete m/z peaks over time and across laboratories.

2007 ◽  
Vol 22 (2) ◽  
pp. 89-94 ◽  
Author(s):  
M.B. Caspersen ◽  
N.M. Sørensen ◽  
A.S. Schrohl ◽  
P. Iversen ◽  
H.J. Nielsen ◽  
...  

Early detection of colorectal cancer (CRC) improves patient survival. Plasma tissue inhibitor of metalloproteinases 1 (TIMP-1) measurements by enzyme-linked immunosorbent assay (ELISA) have been suggested as a new method for the early detection of CRC. To further investigate the nature of TIMP-1 in plasma, surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI TOF MS) was used. TIMP-1 measurements of plasma from 16 healthy donors and 14 CRC patients were performed using TIMP-1 monoclonal antibody in SELDI TOF MS and ELISA. SELDI TOF MS applying an antibody to TIMP-1 revealed that human plasma TIMP-1 has a mass of 25.1 kDa and exhibits several isoforms. Both methods showed increased plasma TIMP-1 values for cancer patients as compared to healthy individuals. The p values for the separation of the groups were 0.0019 for ELISA and <0.0001 for SELDI TOF MS. CRC did not fundamentally affect the appearance of TIMP-1 as evaluated by SELDI TOF MS.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Chibo Liu

Cancer diagnosis is important, and the early diagnosis of cancers could predict a more successful treatment. The proteomic studies emerged to be useful in combined analyses of samples from patients and provide more accurate diagnosis when compared to the single-factor-based diagnosis. In recent years, cancer detection with surface-enhanced laser desorption/ionization time of flight mass spectrometry (SELDI-TOF MS) is flourishing and brought significant progress in this area. This paper summarizes some recent results with this technique for cancer diagnosis.


2008 ◽  
Vol 86 (8) ◽  
pp. 566-570 ◽  
Author(s):  
Jens Raila ◽  
Philipp Kalk ◽  
Thiemo Pfab ◽  
Christa Thöne-Reineke ◽  
Michael Godes ◽  
...  

The pathways leading to salt-sensitive hypertension and renal damage in rescued ETB receptor-deficient (ETBRd) rats are still unknown. The objective of the study was therefore to identify modifications of urinary peptide and protein expression in ETBRd rats (n = 9) and wild-type controls (n = 6) using SDS – polyacrylamide gel electrophoresis (SDS-PAGE) and surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) technology. Glomerular filtration rate, glomerulosclerosis, and tubulointerstitial fibrosis did not differ between the groups. ETBRd rats showed slightly higher blood pressure (p < 0.001), media/lumen ratio of intrarenal arteries (p < 0.01), and albuminuria (p < 0.01). SDS-PAGE confirmed albuminuria, but showed no differences in the urinary excretion of low molecular weight proteins (<60 kDa). SELDI-TOF-MS profiling revealed 9 proteomic features at molecular masses (Da) of 2720, 2980, 3130, 3345, 6466, 6682, 8550, 18 729, and 37 492, which were significantly elevated (p < 0.02) in urine of ETBRd rats. The results demonstrate that, independent of structural changes in the kidneys, ETB-receptor deficiency causes specific differences in urinary peptide and protein excretion. SELDI-TOF-MS may be a valuable tool for the characterization of urinary biomarkers helping to uncover the mechanism of ETBR action in the kidney.


Sign in / Sign up

Export Citation Format

Share Document